首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The brain of many species including humans, harbors stem cells that continue to generate new neurons up into adulthood. This form of structural plasticity occurs in a limited number of brain regions, i.e. the subventricular zone and the hippocampal dentate gyrus and is regulated by environmental and hormonal factors. In this minireview, we provide an overview of the effects of stress and glucocorticoid hormones on adult hippocampal neurogenesis and discuss how these effects may be relevant for cognitive function and possibly, brain disease. While its exact functional role remains elusive, adult neurogenesis has been implicated in learning and memory, fear and mood regulation and recently, adult-born neurons were found to be involved in specific cognitive functions such as pattern separation (i.e. the ability to form unique memory representations) and cognitive flexibility. The process of adult neurogenesis is influenced by several factors; whereas e.g. exercise stimulates, exposure to stress and stress hormones generally inhibit neurogenesis. Effects of acute, mild stress are generally short-lasting and recover quickly, but chronic or severe forms of stress can induce lasting reductions in adult neurogenesis. Some of the inhibitory effects of stress can be rescued by exercise, by allowing a period of recovery from stress, by drugs that target the stress system, or by some, but not all, antidepressants. Stress may, partly through its effects on adult neurogenesis, alter structure and plasticity of the hippocampal circuit. This can lead to subsequent changes in stress responsivity and aspects of memory processing, which may be particularly relevant for stress related psychopathology or brain diseases that involve perturbed memory processing.  相似文献   

2.
Advanced maternal or paternal age is associated with increased risks of cognitive and emotional disorders. Chronic stress is also a common experience in human life that causes psychiatric diseases. However, the synergistic effects of these two factors on offspring are rarely studied. In the present study, the offspring of both young (3–4 months) and old (12–14 months) rat parents were given CUMS for 21 days at the age of 4 weeks. The effects of advanced parental age and chronic unpredictable mild stress (CUMS) on emotional and cognitive behaviors and the related cellular mechanisms were investigated by using behavioral and electrophysiological techniques. We found that CUMS decreased sucrose consumption, increased anxiety, and impaired learning and memory in offspring from both old and young breeders. However, advanced parental age impaired fear memory and spatial memory mainly in female offspring. The serum corticosterone of female offspring was lower than males, but advanced parental age significantly elevated serum corticosterone in female offspring in response to electrical foot shocks. In addition, hippocampal LTD was severely impaired in female offspring from older parents. Our results indicated that female offspring from older breeders might be more sensitive to stress, and the hippocampal function was more vulnerable. These results might provide experimental basis for the prevention and treatment of advanced parental age related psychiatric disorders in future.  相似文献   

3.
Stress has complex effects on memory function that can vary depending on the type of information that is learned and in relation to inter-individual characteristics. Recent work has also shown that stress can switch performance between memory systems, biasing it toward habit in detriment of spatial or goal-directed strategies. In addition, novel synaptic mechanisms have been implicated in the effects of stress in plasticity and memory. Computational modeling is emerging as a useful approach to integrate and to ascertain neural and cognitive computations underlying different effects of stress in memory. Having provided novel explanations for the inverted-U-shaped relationship between stress and cognitive performance, model-based analysis studies can improve our understanding of diverse effects of stress in cognition and psychopathology.  相似文献   

4.
Role of adrenal stress hormones in forming lasting memories in the brain   总被引:21,自引:0,他引:21  
Recent experiments investigating the effects of adrenal stress hormones on memory provide extensive evidence that epinephrine and glucocorticoids modulate long-term memory consolidation in animals and human subjects. Release of norepinephrine and activation of beta-adrenoceptors within the basolateral amygdala is critical in mediating adrenal stress hormone regulation of memory consolidation.  相似文献   

5.
以当前生理学、医学等相关学科研究的最新成果为例介绍了雌激素、应激和人类认知功能三者之间的关系。说明雌激素与应激均可影响人类情绪、中枢学习和记忆功能,不利应激降低雌激素水平,而雌激素又可减少不利应激带来的损害,最后指出雌激素替代治疗的广阔临床应用前景。  相似文献   

6.
We often form intentions but have to postpone them until the appropriate situation for retrieval and execution has come, an ability also referred to as event-based prospective memory. After intention completion, our cognitive system has to deactivate no-more-relevant intention representations from memory to avoid interference with subsequent tasks. In everyday life, we frequently rely on these abilities also in stressful situations. Surprisingly, little is known about potential stress effects on these functions. Therefore, the present study aimed to examine the reliability of event-based prospective memory and of intention deactivation in conditions of acute psychosocial stress. To this aim, eighty-two participants underwent the Trier Social Stress Test, a standardized stress protocol, or a standardized control situation. Following this treatment, participants performed a computerized event-based prospective memory task with non-salient and focal prospective memory cues in order to assess prospective memory performance and deactivation of completed intentions. Although the stress group showed elevated levels of salivary cortisol as marker of a stress-related increase in hypothalamus-pituitary-adrenal axis activity throughout the cognitive testing period compared to the no-stress group, prospective memory performance and deactivation of completed intentions did not differ between groups. Findings indicate that cognitive control processes subserving intention retrieval and deactivation after completion may be mostly preserved even under conditions of acute stress.  相似文献   

7.
Active Caspase-6 is abundant in the neuropil threads, neuritic plaques and neurofibrillary tangles of Alzheimer disease brains. However, its contribution to the pathophysiology of Alzheimer disease is unclear. Here, we show that higher levels of Caspase-6 activity in the CA1 region of aged human hippocampi correlate with lower cognitive performance. To determine whether Caspase-6 activity, in the absence of plaques and tangles, is sufficient to cause memory deficits, we generated a transgenic knock-in mouse that expresses a self-activated form of human Caspase-6 in the CA1. This Caspase-6 mouse develops age-dependent spatial and episodic memory impairment. Caspase-6 induces neuronal degeneration and inflammation. We conclude that Caspase-6 activation in mouse CA1 neurons is sufficient to induce neuronal degeneration and age-dependent memory impairment. These results indicate that Caspase-6 activity in CA1 could be responsible for the lower cognitive performance of aged humans. Consequently, preventing or inhibiting Caspase-6 activity in the aged may provide an efficient novel therapeutic approach against Alzheimer disease.  相似文献   

8.
Cancer chemotherapy is often associated with cognitive deficits which may remain after the treatment has ended. As more people survive cancer, concern is increasing about the impact of these problems with memory and executive function when they return to everyday life. When chemotherapeutic drugs are administered to healthy animals in dosing regimens modeling those used in humans, cognitive deficits also occur, and these preclinical studies can provide information about the biological mechanisms by which the cancer fighting drugs affect the brain. Evidence from animal studies points to damage to hippocampus, particularly a disruption of neurogenesis, whereas human studies emphasize cognitive deficits associated with impairments in frontal cortical function. This discrepancy may be due more to the tasks selected by researchers, and the choice of biochemical endpoints than inherently different effects of chemotherapy in humans and rodents. These differences in approach must be reconciled if common underlying mechanisms are to be identified, with the hope of leading to novel drug or non-pharmacological treatments. This may be achieved by broadening the scope of human and animal studies, and by looking outside the topic of chemotherapy-induced cancer deficits to learn from the advances being made by studying the effects of stress and somatic disease on brain function, and the cognitive impairments now recognized to result from a wide range of mental and physical illnesses.  相似文献   

9.
The relation between neuropsychology and the study of normal cognitive function is discussed in the context of recent research on human memory. It is suggested that neuropsychological evidence has clear implications for the fractionation of human memory into subsystems. The distinction between long-term and short-term memory, between semantic and episodic memory, and the further fractionation of short-term or working memory all offer examples of concepts that have been successfully applied within the neuropsychological domain, and where the neuropsychological evidence has led to a modification and development of the original concept. Attempts to offer a cognitive interpretation of the amnesic syndrome are discussed. While none of these is entirely satisfactory, such work has led to a potentially important distinction between autobiographical memory or recollection, which is defective in amnesic patients, and a more perceptual or procedural learning process, which appears to be intact in such patients. Recent research on normal subjects is beginning to reveal a similar distinction. It is concluded that the relation between neuropsychology and the study of normal cognitive function continues to be an extremely fruitful one.  相似文献   

10.
In this study, we tested preventive effects of a natural medicine the extract of Ginkgo biloba (EGB 761) on post-stress cognitive dysfunction. Exposure to chronic restraint stress in rats and psychosocial stress in humans has been shown to alter cognitive functions such as learning and memory and have been linked to the pathophysiology of mood and anxiety disorders.Our findings indicate that chronic restraint stress impaired egocentric spatial memory as observed in the eight-arm radial maze but it did not alter the allocentric spatial memory in the Morris water maze. In control rats EGB 761 (100 mg/kg, orally) improved spatial memory in these two tests. Also, EGB 761 normalized cognitive deficits seen in rats chronically stressed or treated with an ‘equivalent’ dose of exogenous corticosterone (5 mg/kg, subcutaneously).We conclude that, in rats, repeated administration of EGB 761 prevents stress- and corticosterone-induced impairments of spatial memory.  相似文献   

11.
Comparatively little is known about the inherited primate background underlying human cognition, the human cognitive "wild-type." Yet it is possible to trace the evolution of human cognitive abilities and tendencies by contrasting the skills of our nearest cousins, not just chimpanzees, but all the extant great apes, thus showing what we are likely to have inherited from the common ancestor. By looking at human infants early in cognitive development, we can also obtain insights into native cognitive biases in our species. Here, we focus on spatial memory, a central cognitive domain. We show, first, that all nonhuman great apes and 1-year-old human infants exhibit a preference for place over feature strategies for spatial memory. This suggests the common ancestor of all great apes had the same preference. We then examine 3-year-old human children and find that this preference reverses. Thus, the continuity between our species and the other great apes is masked early in human ontogeny. These findings, based on both phylogenetic and ontogenetic contrasts, open up the prospect of a systematic evolutionary psychology resting upon the cladistics of cognitive preferences.  相似文献   

12.
Emotional biases in attention, interpretation, and memory are predictive of future depressive symptoms. It remains unknown, however, how these biased cognitive processes interact to predict depressive symptom levels in the long-term. In the present study, we tested the predictive value of two integrative approaches to model relations between multiple biased cognitive processes, namely the additive (i.e., cognitive processes have a cumulative effect) vs. the weakest link (i.e., the dominant pathogenic process is important) model. We also tested whether these integrative models interacted with perceived stress to predict prospective changes in depressive symptom severity. At Time 1, participants completed measures of depressive symptom severity and emotional biases in attention, interpretation, and memory. At Time 2, one year later, participants were reassessed to determine depressive symptom levels and perceived stress. Results revealed that the weakest link model had incremental validity over the additive model in predicting prospective changes in depressive symptoms, though both models explained a significant proportion of variance in the change in depressive symptoms from Time 1 to Time 2. None of the integrative models interacted with perceived stress to predict changes in depressive symptomatology. These findings suggest that the best cognitive marker of the evolution in depressive symptoms is the cognitive process that is dominantly biased toward negative material, which operates independent from experienced stress. This highlights the importance of considering idiographic cognitive profiles with multiple cognitive processes for understanding and modifying effects of cognitive biases in depression.  相似文献   

13.
While intense negative events are vividly recalled, information learned during stressful situations is poorly remembered. These differential effects of emotions and stress on memory have been attributed to the physiological manifestations generated during those affective states. Intense emotional and stressful events trigger the secretion of catecholamines and of glucocorticoids, in particular. These hormones would be modulatory agents of memory functions. In the first part of this paper, we review the specific effects emotions and stress have on memory. We then summarize the psychological and biological determinants responsible for these effects. Finally, we discuss different methodological issues that could explain the discrepancy found between the impact of emotions and stress on memory. Defining more precisely the effects emotion and stress have on memory will lead to a better comprehension of the cognitive problems that characterize patients dealing with emotional turmoil, such as patients suffering from depression or post-traumatic stress disorder.  相似文献   

14.
Xi G  Hui J  Zhang Z  Liu S  Zhang X  Teng G  Chan KC  Wu EX  Nie B  Shan B  Li L  Reynolds GP 《PloS one》2011,6(12):e28686
It is generally accepted that cognitive processes, such as learning and memory, are affected in depression. The present study used a rat model of depression, chronic unpredictable mild stress (CUMS), to determine whether hippocampal volume and neurochemical changes were involved in learning and memory alterations. A further aim was to determine whether these effects could be ameliorated by escitalopram treatment, as assessed with the non-invasive techniques of structural magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS). Our results demonstrated that CUMS had a dramatic influence on spatial cognitive performance in the Morris water maze task, and CUMS reduced the concentration of neuronal marker N-acetylaspartate (NAA) in the hippocampus. These effects could be significantly reversed by repeated administration of escitalopram. However, neither chronic stress nor escitalopram treatment influenced hippocampal volume. Of note, the learning and memory alterations of the rats were associated with right hippocampal NAA concentration. Our results indicate that in depression, NAA may be a more sensitive measure of cognitive function than hippocampal volume.  相似文献   

15.
目的:探讨应激对机体脑体功能的损伤效应及其生物学机制,为应激损伤防护措施的制订提供科学依据。方法:采用束缚应激模型,观察模型动物认知功能、体能、海马LTP、血浆糖皮质激素、心电图、心肌组织结构等指标的变化。结果:应激动物学习记忆能力和运动耐力明显下降,血浆糖皮质激素水平显著升高,海马LTP诱发受到抑制,心电图异常改变,心功能紊乱,心肌组织结构出现病理损伤,心肌细胞凋亡率增加,心肌组织Hsp70表达水平随应激强度增加而逐渐降低。结论:应激诱导机体神经一内分泌功能紊乱,进而导致机体脑体功能损伤。  相似文献   

16.
The analysis of spatial learning and memory in rodents is commonly used to investigate the mechanisms underlying certain forms of human cognition and to model their dysfunction in neuropsychiatric and neurodegenerative diseases. Proper interpretation of rodent behavior in terms of spatial memory and as a model of human cognitive functions is only possible if various navigation strategies and factors controlling the performance of the animal in a spatial task are taken into consideration. The aim of this review is to describe the experimental approaches that are being used for the study of spatial memory in rats and mice and the way that they can be interpreted in terms of general memory functions. After an introduction to the classification of memory into various categories and respective underlying neuroanatomical substrates, I explain the concept of spatial memory and its measurement in rats and mice by analysis of their navigation strategies. Subsequently, I describe the most common paradigms for spatial memory assessment with specific focus on methodological issues relevant for the correct interpretation of the results in terms of cognitive function. Finally, I present recent advances in the use of spatial memory tasks to investigate episodic-like memory in mice.  相似文献   

17.
Spatial abilities allow animals to retain and cognitively manipulate information about their spatial environment and are dependent upon neural structures that mature during adolescence. Exposure to stress in adolescence is thought to disrupt neural maturation, possibly compromising cognitive processes later in life. We examined whether exposure to chronic unpredictable stress in adolescence affects spatial ability in late adulthood. We evaluated spatial learning, reference and working memory, as well as long-term retention of visuospatial cues using a radial arm water maze. We found that stress in adolescence decreased the rate of improvement in spatial learning in adulthood. However, we found no overall performance impairments in adult reference memory, working memory, or retention caused by adolescent-stress. Together, these findings suggest that adolescent-stress may alter the strategy used to solve spatial challenges, resulting in performance that is more consistent but is not refined by incorporating available spatial information. Interestingly, we also found that adolescent-stressed rats showed a shorter latency to begin the water maze task when re-exposed to the maze after an overnight delay compared with control rats. This suggests that adolescent exposure to reoccurring stressors may prepare animals for subsequent reoccurring challenges. Overall, our results show that stress in adolescence does not affect all cognitive processes, but may affect cognition in a context-dependent manner.

Highlights

  • -Rats were reared with or without chronic unpredictable stress in adolescence.
  • -In adulthood, spatial cognitive abilities were tested in a radial arm water maze.
  • -Prior-stressed rats began searching faster in the maze after an overnight delay.
  • -Prior stress may facilitate faster action in challenging situations.
  • -Prior stress did not affect learning, reference or working memory, or retention.
  相似文献   

18.
认知地图的神经环路基础   总被引:1,自引:0,他引:1  
空间记忆是人类认识世界和改造世界的基本认知能力,与我们的生活息息相关.无论是寻找常用的生活物件,如钥匙和手机,还是外出上班、购物和约会,都依赖我们对周围环境的记忆.截止到目前已有大量研究从不同水平探讨大脑如何表征其周围环境,但仍然有很多未解的问题.本文系统综述了基于脑成像和神经电生理技术开展的空间记忆研究进展.通过梳理以往研究中有关生物体在构建认知地图的神经结构和神经活动规律,提出了海马结构和新皮层对空间记忆的编码环路和表征机制,并在此基础上对未来研究进行了展望.  相似文献   

19.
Military operations in tropical environments have imposed a significant challenge to the Australian Defence Forces (ADF). The hot and humid conditions are known to cause debilitating effects on soldiers deployed to northern regions of Australia, with the consequence that the effectiveness and efficiency of operations are severely compromised. While the adverse effects of thermal stress on soldiers' physiological capability are well established, this has not been confirmed for cognitive performance. A select range of psychometric tests were administered and functional brain electrical activity imaging was performed to investigate the impact of thermal stress on cognitive performance. The brain electrical activity of subjects was measured while undertaking a range of cognitive tasks. Steady State Probe Topography (SSPT), a novel brain imaging technology, was employed to monitor the changes in regional brain activity and neural processing speed of subjects under thermal stress. The psychometric test batteries included the following tasks; Rey Auditory Verbal Learning Test; Inspection Time; Digit Span test; a spatial working memory task; and the AX-continuous performance task. These tasks measure a range of cognitive processes including attention, memory, verbal learning, information processing and concentration. The functional brain imaging provided topographical information, which showed changes in electrical activity in response to thermal stress during cognitive performance. These changes in brain electrical activity and neural speed induced by thermal stress may help to identify the type of cognitive functions that are likely to be impaired under operational conditions. Results indicated that subjects experienced increasing cardiovascular strain through thermally neutral to thermally straining conditions. The results from the psychometric test battery showed some promising effects given the small sample size including deficits in working memory, in information retention and in information processing. There was also marked differences in the electrical responses of the brain when subjects were thermally strained. The Steady-State Visual Evoked Potential recordings showed an increase in amplitude and a decrease in latency, suggesting an increase in the utilisation of neural resources or effort by subjects to maintain the same level of performance as under thermally neutral conditions. The data are suggestive of the high sensitivity of brain imaging techniques with high temporal resolution to identify important decrements in cognitive performance in hostile environments.  相似文献   

20.
Insulin resistance (IR) links Alzheimer’s disease (AD) with oxidative damage, cholinergic deficit, and cognitive impairment. Peroxisome proliferator-activated receptor γ (PPARγ) agonist pioglitazone previously used to treat type 2 diabetes mellitus (T2DM) has also been demonstrated to be effective in anti-inflammatory reaction and anti-oxidative stress in the animal models of AD and other neuroinflammatory diseases. Here, we investigated the effect of pioglitazone on learning and memory impairment and the molecular events that may cause it in fructose-drinking insulin resistance rats. We found that long-term fructose-drinking causes insulin resistance, oxidative stress, down-regulated activity of cholinergic system, and cognitive deficit, which could be ameliorated by pioglitazone administration. The results from the present study provide experimental evidence for using pioglitazone in the treatment of brain damage caused by insulin resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号