首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The aim of this study was to investigate further the hormone-dependent processes underlying sex differences in neurotoxic responses within the rat nigrostriatal dopaminergic (NSDA) pathway after partial lesioning with 6-OHDA, a state thought to mimic the early stages of Parkinson's disease where, in humans and animal models alike, males appear to be more susceptible. Contrary to our hypotheses, hormone manipulations (gonadectomy +/- oestrogen or androgen treatment) failed to alter survival of tyrosine hydroxylase immunoreactive cells in the substantia nigra pars compacta (SNc) after lesioning; this indicates that, unlike inherent sex differences in toxin-induced striatal dopamine depletion, sex differences in cell loss were not hormonally generated, and that hormone-dependent changes in dopamine depletion can occur independently of cell survival. In addition, hormonally induced changes in striatal expression of the dopamine transporter (DAT), an important factor for 6-OHDA toxicity, did not correlate with hormonal influences on striatal dopamine loss and, in males, central inhibition of aromatase prior to 6-OHDA infusion exacerbated striatal dopamine loss with no effect on SNc tyrosine hydroxylase-immunoreactive survival, suggesting locally generated oestrogen is neuroprotective. These results support the novel view that sex steroid hormones produced peripherally and centrally play a significant, sex-specific role within the sexually dimorphic NSDA pathway to modulate plastic, compensatory responses aimed at restoring striatal dopamine functionality, without affecting cell loss.  相似文献   

3.
Calpains represent a superfamily of Ca2+-activated cysteine-proteases, which are important mediators of apoptosis and necrosis. In the brain, m-calpain and micro-calpain, the two ubiquitous calpain-isoforms, are strongly activated in neurones after an excitotoxic Ca2+ influx occurring, for example, during cerebral ischemia. Because oestrogen and its receptors (ERalpha/ERbeta) can exert neuroprotective activity, we investigated their influence on expression of calpains and their endogenous inhibitor, calpastatin. We found that ectopic expression of ERalpha in human neuroblastoma SK-N-MC cells led to a ligand-independent constitutive down-regulation of m-calpain accompanied by an up-regulation of micro-calpain expression. Up-regulation of micro-calpain was reversed in the presence of oestrogen, which, in turn, could be blocked by co-treatment with the oestrogen-receptor antagonist ICI 182,780. Expression of calpastatin was not altered, either in the absence or in the presence of oestrogen. Additional studies revealed that ERalpha-expressing cells exhibited decreased calpain enzymatic activity and increased survival when cells were exposed to the Ca2+ ionophore, ionomycin. Since all investigated effects could be observed exclusively in the presence of ERalpha, but not ERbeta, and since the effects are reduced when ERalpha and ERbeta are co-expressed, our data suggest a novel ER subtype-specific neuroprotective action by repressing calpain expression and calpain activity under conditions of a massive Ca2+ influx.  相似文献   

4.
It is now well established that the mycotoxin zearalenone and some of its derivatives possess oestrogenic activity. In the present study, the binding characteristics of [3H]zearalanol (P-1496) to different classes of sites including [1] the oestrogen receptor, [2] the higher capacity lower affinity (HCLA) sites, [3] the antioestrogen sites and [4] a new class of binding sites apparently specific for P-1496 were examined in rat liver. Analysis of the binding by sucrose density gradient centrifugation confirmed that P-1496 binds to the oestrogen receptor but not to the higher capacity lower affinity sites for oestradiol-17 beta. Furthermore, saturation experiments using partially-purified fractions showed that P-1496 binds to the oestrogen receptor with an affinity very similar to that of oestradiol-17 beta (apparent dissociation constants ranged from 0.1-0.3 nM). Competition studies using partially purified cytosolic oestrogen receptor suggested that P-1496 binds to a second high affinity site distinct from the oestrogen receptor. This binding site was further characterized as selective for P-1496 by saturation analysis following the complete occupancy of oestrogen receptor by oestradiol-17 beta. The in vitro binding characteristics of P-1496 were then compared with in vivo effects on concentrations of serum triglycerides. Treatment of ovariectomized female rats daily with 1.5 or 2 mg P-1496/kg body weight resulted in marked increases in the concentrations of serum triglycerides associated with the very low density lipoprotein (VLDL) fraction. Dose-response studies indicated that there was no sex difference with respect to the dose necessary to produce significant increases in serum triglycerides. The present study shows striking similarities between the binding of P-1496 and oestradiol-17 beta to liver oestrogen receptor in vitro. However, differences are observed with respect to their binding to other cytoplasmic components of liver. In addition, although P-1496 is capable of eliciting in vivo oestrogenic effects in liver, it is much less potent than oestradiol-17 beta.  相似文献   

5.
The contractile response of the uterus is modified by sex steroids. In rabbit uterus, oestrogen promotes alpha-adrenergically-mediated contraction, whilst progesterone treatment results in beta-adrenergic relaxation. Examination of the mechanisms responsible for these changing adrenergic responses with sex steroids reveals multiple sites of regulation. Oestrogen increases alpha 1-receptor concentration and the linkage of the receptor to phospholipase C. In addition to this direct effect to promote contraction, oestrogen also uncouples the beta-receptor from adenylate cyclase. Progesterone, conversely, promotes relaxation through beta-receptors by uncoupling alpha 2-receptors from inhibition of adenylate cyclase. Thus sex steroids can regulate specific agonist responses at and beyond the receptor.  相似文献   

6.
Rapid oestrogen neuroprotection against beta-amyloid peptide (Abeta)-induced toxicity, a main feature of Alzheimer's disease, may be partially initiated at the plasma membrane. However, the mechanism by which this oestrogen effect occurs is unknown. In a septal murine cell line (SN56), we observed that short exposures to either 17beta-oestradiol (E2) or membrane impermeant E2 bound to horseradish peroxidase (E-HRP) induced a biphasic stimulation of extracellular-signal regulated protein kinase (ERK1/2) phosphorylation, with peak inductions detected around 4-8 min in the early phase and a second maximum around 8 h after treatment. ERK1/2 phosphorylation was abolished by ERK1/2 kinase (MEK) inhibitors PD98059 and U0126. Interestingly, PD98059 was also shown to block rapid E2-related prevention of death in cells exposed to Abeta fragment 1-40 (Abeta1-40) for 24 h. In contrast, no neuroprotective effects were obtained when MEK inhibitor was used to selectively abolish the late phosphorylation phase. Furthermore, both ERK1/2 activation and E2-associated protection were blocked by an inhibitor of Raf-1 kinase. Raf-1 may be involved in these effects because oestrogen caused the rapid serine 338 (Ser338) phosphorylation of this protein. In addition, the oestrogen receptor (ER) antagonist ICI 182,780 was also observed to block ERK1/2 phosphorylation. We propose a novel mechanism in SN56 cells by which rapid effects of oestrogen leading to neuroprotection are signalled through Raf-1/MEK/ERK1/2 pathway, possibly by activation of a membrane-related ER.  相似文献   

7.
Spatial working memory in rats: no differences between the sexes   总被引:6,自引:0,他引:6  
In a number of mammalian species, males appear to have superior spatial abilities to females. The favoured explanations for this cognitive difference are hormonal, with higher testosterone levels in males than females leading to better spatial performance, and evolutionary, where sexual selection has favoured males with increased spatial abilities for either better navigational skills in hunting or to enable an increased territory size. However, an alternative explanation for this sex difference focuses on the role of varying levels of oestrogen in females in spatial cognition (the 'fertility and parental care' hypothesis). One possibility is that varying oestrogen levels result in variation in spatial learning and memory so that, when tested across the oestrous cycle, females perform as well as males on days of low oestrogen but more poorly on days of high oestrogen. If day in the oestrous cycle is not taken into account then, across an experiment, any sex differences found would always produce male superiority. We used a spatial working memory task in a Morris water maze to test the spatial learning and memory abilities of male and female rats. The rats were tested across a number of consecutive days during which the females went through four oestrous cycles. We found no overall sex differences in latencies to reach a submerged platform in a Morris water maze but, on the day of oestrus (low oestrogen), females took an extra swim to learn the platform's location (a 100% increase over the other days in the cycle). Female swim speed also varied across the oestrous cycle but females were no less active on the day of oestrus. These results oppose the predictions of the fertility and parental care hypothesis.  相似文献   

8.
Oestrogen is important for the development of neuroendocrine centres and other neural networks including limbic and motor systems. Later in adulthood, oestrogen regulates the functional performance of different neural systems and is presumably implicated in the modulation of cognitive efficiency. Although still a matter of controversial discussion, clinical and experimental studies point at a potential neuroprotective role of oestrogen. Concerning the concept of cellular oestrogen action, it is undisputed that it comprises the binding and activation of nuclear receptors. The last decades have, however, immensely broadened the spectrum of steroid signalling within a cell. Novel steroid-activated intracellular signalling mechanisms were described which are usually termed 'non-classical' or 'non-genomic'. The brain appears to be a rich source of this new mode of oestrogen action. Studies from the past years have pinpointed non-classical oestrogen effects in many CNS regions. All available data support the view that non-classical oestrogen action requires interactions with putative membrane binding sites/receptors. In this article, we aim at compiling the most recent findings on the nature and identity of membrane oestrogen receptors with respect to the brain. We also attempt to turn readers attention to the coupling of these 'novel' receptors to distinct intracellular signalling pathways.  相似文献   

9.
Xenopus laevis shows a sexual dimorphism of the electrophoretic pattern of Harderian gland (HG) proteins. The male pattern displays three protein fractions whose molecular sizes are approx. 205, 180 and 78 kDa, respectively, and which are absent in the female pattern. Conversely, the female pattern displays two protein fractions of approx. 190 and 76 kDa, respectively. This sexual dimorphism led us to hypothesize a sex steroid control of the HG. Administration of 17β-oestradiol to male Xenopus converts the male protein pattern into the female one, while the administration of testosterone to the female has no effect. In this respect neither Northern analysis nor the RNase-protection assay performed using a 213 bp encoding for the androgen-binding domain reveals the presence of an androgen receptor mRNA in Xenopus HG. Conversely, Northern analysis has shown an oestrogen receptor mRNA whose size is approx. 6.5 kb and the RNase-protection assay performed by using a 197 bp encoding for the oestrogen-binding domain has also displayed the presence of an oestrogen receptor mRNA in the female HG but not in the male one. In addition, the oestrogen administration to male Xenopus induces the appearance of an oestrogen receptor mRNA. Androgen administration to female toad is ineffective. Taken together, all these findings suggest that in Xenopus laevis oestrogens are involved into the HG physiology. The appearance of an oestrogen receptor mRNA in the oestradiol treated males supports the hypothesis of the occurrence of autoinduction of oestrogen receptor mRNA expression in the HG.  相似文献   

10.
In order to determine whether the gonadal and hypophyseal modes of regulation recently reported for the microsomal enzymes of hepatic steroid metabolism are also valid for cytoplasmic enzymes, three enzymes whose activities exhibit sex differences (male:female activity ratio shown in brackets), 5beta-reductase(1.7:1), 20alpha-hydroxysteroid dehydrogenase(5 : 1) and 17beta-hydroxysteroid dehydrogenase (4:1), as well as one enzyme whose activity shows no sex difference, 3beta-hydroxy-delta5-steroid dehydrogenase, were investigated after various interferences with the endocrine balance (gonadectomy, hypophysectomy, combination of both operations, administration of testosterone or oestradiol). From the results of this and a previous study the following statements can be made about the endocrine control of hepatic enzyme activities. Those enzymes whose activities show sex differences are either androgen or oestrogen dependent; the sex hormone acts in either an inductive or repressive manner. 1) Criteria for androgen dependency are the feminization of enzyme activity after testectomy or inhibition of testicular function by administration of oestradiol; masculinization of the enzyme activity after administration of testosterone to male or female castrates. Using these criteria the following enzymes investigated in this laboratory fall into this category: all microsomal enzymes which show sex differences in their activity (3alpha-, 3beta-, delta4-3beta, 20-hydroxysteroid dehydrogenase; cortisone alpha-reductase; steroid hydroxylases and 16alpha-hydroxylase) as well as the cytoplasmic 20alpha-hydroxysteroid dehydrogenase. Apart from the single exception of 20alpha-hydroxy-steroid dehydrogenase the presence of the hypophysis is obligatory for the androgen to be effective. The hypophysis does not only work in a permissive manner, but participates in establishing the sex specific activity levels in a manner which is antagonistic to the androgen action. 2) Criteria for oestrogen dependency are that the female animal reacts to gonadectomy, as well as to the inhibition of ovarian function after testosterone administration, by a masculinization of the enzyme activities. After administration of oestradiol, but not gonadectomy, the male animal exhibits typical female activity. Using these criteria the cytoplasmic 5beta-reductase and 17beta-hydroxysteroid dehydrogenase are oestrogen dependent. The repressive oestrogen effect observed on 17beta-hydroxysteroid dehydrogenase is antagonistic to hypophyseal action, whereas in the case of 5beta-reductase it is synergistic. 3) The activities of cytoplasmic 3beta-hydroxy-delta5-steroid dehydrogenase and microsomal 7alpha-hydroxylase show no sex differences and are not influenced by any interference with the endocrine balance.  相似文献   

11.
The effects of sex hormones on immune function have received much attention, especially following the proposal of the immunocompetence handicap hypothesis. Many studies, both experimental and correlational, have been conducted to test the relationship between immune function and the sex hormones testosterone in males and oestrogen in females. However, the results are mixed. We conducted four cross‐species meta‐analyses to investigate the relationship between sex hormones and immune function: (i) the effect of testosterone manipulation on immune function in males, (ii) the correlation between circulating testosterone level and immune function in males, (iii) the effect of oestrogen manipulation on immune function in females, and (iv) the correlation between circulating oestrogen level and immune function in females. The results from the experimental studies showed that testosterone had a medium‐sized immunosuppressive effect on immune function. The effect of oestrogen, on the other hand, depended on the immune measure used. Oestrogen suppressed cell‐mediated immune function while reducing parasite loads. The overall correlation (meta‐analytic relationship) between circulating sex hormone level and immune function was not statistically significant for either testosterone or oestrogen despite the power of meta‐analysis. These results suggest that correlational studies have limited value for testing the effects of sex hormones on immune function. We found little evidence of publication bias in the four data sets using indirect tests. There was a weak and positive relationship between year of publication and effect size for experimental studies of testosterone that became non‐significant after we controlled for castration and immune measure, suggesting that the temporal trend was due to changes in these moderators over time. Graphical analyses suggest that the temporal trend was due to an increased use of cytokine measures across time. We found substantial heterogeneity in effect sizes, except in correlational studies of testosterone, even after we accounted for the relevant random and fixed factors. In conclusion, our results provide good evidence that testosterone suppresses immune function and that the effect of oestrogen varies depending on the immune measure used.  相似文献   

12.
Gene expression of all known subtypes of oestrogen receptor (ER) and oestrogen‐related receptor (ERR) in multiple organs and both sexes of the Japanese medaka Oryzias latipes was profiled and systematically analysed. As revealed by statistical analyses and low‐dimensional projections, the expressions of ERRs proved to be organ and sex dependent, which is in contrast with the ubiquitous nature of ERs. Moreover, expressions of specific ERR isoforms (ERRγ1, ERRγ2) were strongly correlated with that of all ERs (ERα, ERβ1 and ERβ2), suggesting the existence of potential interactions. Findings of this study shed light on the co‐regulatory role of particular ERRs in oestrogen‐ERs signalling and highlight the potential importance of ERRs in determining organ and sex‐specific oestrogen responses. Using O. latipes as an alternative vertebrate model, this study provides new directions that call for collective efforts from the scientific community to unravel the mechanistic action of ER‐ERR cross‐talks, and their intertwining functions, in a cell and sex‐specific manner in vivo.  相似文献   

13.
We have studied type I and type II adrenal cortical steroid receptors in the anterior (AL), intermediate (IL) and posterior (PL) lobes of the pituitary and in the hippocampus of ovariectomized-adrenalectomized female rats and in castrated-adrenalectomized male animals, with or without oestrogen treatment. Using [3H]dexamethasone as ligand and conditions suitable for determination of its binding to type I and type II receptors, we found that 4 or 15 days of oestrogen reduced type I receptors in AL by 50-60% without changes in IL, PL or hippocampus, or in type II sites in any of the four neuroendocrine tissues studied. This down-regulatory effect was seen only in female rats and no change was found for males. The reduction in type I sites in AL in oestrogenized female rats was confirmed by labelling type I sites with the synthetic antimineralocorticoid [3H]ZK 91587. Saturation analysis with [3H]ZK 91587 demonstrated that the reduction was due to a reduction in Bmax without change in Kd. We conclude that: (a) type I receptors in the anterior pituitary are under oestrogenic control; (b) there is a sex difference in the response to oestrogen of AL type I sites; and (c) this demonstration may be useful in determining the role of type I receptors in neuroendocrine regulation of the anterior pituitary by hormones derived from the adrenal cortex, and the participation of sex hormones in this process.  相似文献   

14.
Oestrogenic wastewater treatment works (WwTW) effluents discharged into UK rivers have been shown to affect sexual development, including inducing intersex, in wild roach (Rutilus rutilus). This can result in a reduced breeding capability with potential population level impacts. In the absence of a sex probe for roach it has not been possible to confirm whether intersex fish in the wild arise from genetic males or females, or whether sex reversal occurs in the wild, as this condition can be induced experimentally in controlled exposures to WwTW effluents and a steroidal oestrogen. Using restriction site‐associated DNA sequencing (RAD‐seq), we identified a candidate for a genetic sex marker and validated this marker as a sex probe through PCR analyses of samples from wild roach populations from nonpolluted rivers. We also applied the sex marker to samples from roach exposed experimentally to oestrogen and oestrogenic effluents to confirm suspected phenotypic sex reversal from males to females in some treatments, and also that sex‐reversed males are able to breed as females. We then show, unequivocally, that intersex in wild roach populations results from feminisation of males, but find no strong evidence for complete sex reversal in wild roach at river sites contaminated with oestrogens. The discovered marker has utility for studies in roach on chemical effects, wild stock assessments, and reducing the number of fish used where only one sex is required for experimentation. Furthermore, we show that the marker can be applied nondestructively using a fin clip or skin swab, with animal welfare benefits.  相似文献   

15.
To dissect the molecular and cellular basis of sexual differentiation of the teleost brain, which maintains marked sexual plasticity throughout life, we examined sex differences in neural expression of all subtypes of nuclear oestrogen and androgen receptors (ER and AR) in medaka. All receptors were differentially expressed between the sexes in specific nuclei in the forebrain. The most pronounced sex differences were found in several nuclei in the ventral telencephalic and preoptic areas, where ER and AR expression were prominent in females but almost completely absent in males, indicating that these nuclei represent female-specific target sites for both oestrogen and androgen in the brain. Subsequent analyses revealed that the female-specific expression of ER and AR is not under the direct control of sex-linked genes but is instead regulated positively by oestrogen and negatively by androgen in a transient and reversible manner. Taken together, the present study demonstrates that sex-specific target sites for both oestrogen and androgen occur in the brain as a result of the activational effects of gonadal steroids. The consequent sex-specific but reversible steroid sensitivity of the adult brain probably contributes substantially to the process of sexual differentiation and the persistent sexual plasticity of the teleost brain.  相似文献   

16.
E2 (17β-oestradiol), a female sex hormone, has important biological functions in a woman's body. The pancreas, often considered a non-classical E2-targeting organ, is known to be functionally regulated by E2, but little is known about how oestrogen actions are regulated in this organ. In the present study we report that PDIp (pancreas-specific protein disulfide isomerase), a protein-folding catalyst, can act as a major intracellular E2 storage protein in a rat model to modulate the pancreatic tissue level, metabolism and action of E2. The purified endogenous PDIp from both rat and human pancreatic tissues can bind E2 with a Kd value of approximately 150?nM. The endogenous PDIp-bound E2 accounts for over 80% of the total protein-bound E2 present in rat and human pancreatic tissues, and this binding protects E2 from metabolic disposition and prolongs its duration of action. Importantly, we showed in ovariectomized female rats that the E2 level in the pancreas reaches its highest level (9-fold increase over its basal level) at 24-48?h after a single injection of E2, and even at 96?h its level is still approximately 5-fold higher. In contrast, the E2 level in the uterus quickly returns to its basal level at 48?h after reaching its maximal level (approximately 2-fold increase) at 24?h. Taken together, these results show for the first time that PDIp is a predominant intracellular oestrogen storage protein in the pancreas, which offers novel mechanistic insights into the accumulation and action of oestrogen inside pancreatic cells.  相似文献   

17.
18.
Oestrogens with no or reduced oestrogen receptor (ER) binding properties are reported to have neuroprotective functions. However, we have previously shown that the hormonally inactive isomer of 17β-estradiol (17β-E), 17α-estradiol (17α-E), down-regulates glutathione (GSH) synthesis, and fails to rescue serum deprivation-induced cell death in the rat pheochromocytoma cell line PC12 in micromolar concentration. The present study examined cellular protective effects of new 17β-E analogs and 2-methoxyestradiol (2-ME) analogs with no or little oestrogen activity. 17β-E, 17α-E, 2-ME, and an antagonist of the G protein-coupled oestrogen receptor (GPER), G36, were also included. Both 17α-E and 2-ME protected against deprivation-induced cell death in PC12 cells at 1?nM, but they enhanced the deprivation-induced cell death accompanied by caspase 3 activity and decreased intracellular GSH levels during deprivation at 10?µM. In addition, 10?μM 17α-E activated the p38 mitogen activated protein kinase pathway, which was linked to the enhanced death and reduced GSH levels. Analogs of 2-ME modified with a 6-isoquinoline moiety (6iq) protected against deprivation-induced cell death at 1?nM and did not interfere with the GSH levels nor increase p38 protein levels at 10?µM. The promoter activity of the catalytic subunit of the rate-limiting enzyme, glutamate cysteine ligase (GCLC) in GSH synthesis as well as protein levels of GCLC and Nrf2, increased with the 2-ME analogs at 10?µM. In conclusion, the steroids have differential protective effects, and modifying 2-ME may give the steroid more favourable properties than 17α-E, 2-ME, and G36 in regard to GSH regulation.  相似文献   

19.
The steroidogenic pathway within the ovary gives rise to progestins, androgens and oestrogens, all of which act via specific nuclear receptors to regulate reproductive function and maintain fertility. The role of progestins in follicular growth and development is limited, its action confined largely to ovulation, although direct effects on granulosa cell function have been reported. Consistent with these findings, progesterone receptor knockout mice are infertile because they cannot ovulate. Androgens have been shown to promote early follicular growth, but also to impede follicular development by stimulating atresia and apoptosis. The inability of androgens to transduce a signal in mice lacking androgen receptors culminates in reduced fertility. Oestrogens are known to exert effects on granulosa cell growth and differentiation in association with gonadotrophins. Studies with oestrogen receptor knockouts and oestrogen depleted mice have shown us that oestrogen is essential for folliculogenesis beyond the antral stage and is necessary to maintain the female phenotype of ovarian somatic cells. In summary, the action of steroids within the ovary is based on the developmental status of the follicle. In the absence of any single sex steroid, ovarian function and subsequently fertility, are compromised.  相似文献   

20.
In this study, we aimed to explore the molecular mechanisms underlying the development of osteoporosis in post-menopausal females. Real-time PCR was conducted to measure the expression of potential lncRNAs involved in the osteoporosis of post-menopausal females. In addition, Western blot and IHC assays were used to study the possible correlation among HOTAIR, miR-138 and TIMP1, while a computational analysis was carried out to predict the ‘seed sequence’ responsible for the binding between miR-138 and HOTAIR/TIMP1. Furthermore, luciferase reporter assays were conducted to validate the negative regulatory relationship between miR-138 and TIMP1/HOTAIR. To evaluate the effect of oestrogen on the function of HOATIR and its downstream effectors, luciferase activity was measured in cells cotransfected with different vectors or treated with different doses of oestrogen. The results of the luciferase assay were further validated by real-time PCR, Western blot, MTT assay and flow cytometry. Among the candidate lncRNAs, HOTAIR was the only lncRNA down-regulated in post-menopausal females. HOTAIR bound to miR-138 and negatively regulated its expression. Meanwhile, miR-138 could also bind to TIMP1 mRNA and reduce its expression. Furthermore, a dose-dependent up-regulation of HOTAIR was observed in cells treated with oestrogen, and the elevated HOTAIR increased the level of TIMP1 by targeting miR-138. In addition, oestrogen promoted cell viability and suppressed cell apoptosis, and effects of oestrogen were blocked by the silencing of HOTAIR. Therefore, it can be concluded that oestrogen deficiency could induce the apoptosis of osteoblasts and lead to osteoporosis in post-menopausal females via modulation of the HOTAIR/miR-138/TIMP1 signalling axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号