首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developmental processes exert their influence on the evolution of complex morphologies through the genetic correlations they engender between traits. Butterfly wing color patterns provide a model system to examine this connection between development and evolution. In butterflies, the nymphalid groundplan is a framework used to decompose complex wing patterns into their component pattern elements. The first goal of this work has been to determine whether the components of the nymphalid groundplan are the products of independent developmental processes. To test this hypothesis, the genetic correlation matrices for two species of butterflies, Precis coenia and Precis evarete, were estimated for 27 wing pattern characters. The second purpose was to test the hypothesis that the differentiation of serial homologs lowers their genetic correlations. The “eyespots” found serially repeated across the fore- and hindwing and on the dorsal and ventral wing surfaces provided an opportunity to test this hypothesis. The genetic correlation matrices of both species were very similar. The pattern of genetic correlation measured between the different types of pattern elements and between the homologous repeats of a pattern element supported the first hypothesis of developmental independence among the elements of the groundplan. The correlation pattern among the differentiated serial homologs was similarly found to support the second hypothesis: pairs of eyespots that had differentiated had lower genetic correlations than pairs that were similar in morphology. The implications of this study are twofold: First, the apparent developmental independence among the distinct elements of wing pattern has facilitated the vast diversification in morphology found in butterflies. Second, the lower genetic correlations betweendifferentiated homologs demonstrates that developmental constraints can in fact be broken. The extent to which genetic correlations readily change, however, remains unknown. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The color patterns on the wings of butterflies are unique among animal color patterns in that the elements that make up the overall pattern are individuated. Unlike the spots and stripes of vertebrate color patterns, the elements of butterfly wing patterns have identities that can be traced from species to species, and typically across genera and families. Because of this identity it is possible to recognize homologies among pattern elements and to study their evolution and diversification. Individuated pattern elements evolved from non-individuated precursors by compartmentalization of the wing into areas that became developmentally autonomous with respect to color pattern formation. Developmental compartmentalization led to the evolution of serially repeated elements and the emergence of serial homology. In these compartments, serial homologues were able to acquire site-specific developmental regulation and this, in turn, allowed them to diverge morphologically. Compartmentalization of the wing also reduced the developmental correlation among pattern elements. The release from this developmental constraint, we believe, enabled the great evolutionary radiation of butterfly wing patterns. During pattern evolution, the same set of individual pattern elements is arranged in novel ways to produce species-specific patterns, including such adaptations as mimicry and camouflage.  相似文献   

3.
Eyespots are concentric motifs with contrasting colours on butterfly wings. Eyespots have intra- and interspecific visual signalling functions with adaptive and selective roles. We propose a reaction-diffusion model that accounts for eyespot development. The model considers two diffusive morphogens and three non-diffusive pigment precursors. The first morphogen is produced in the focus and determines the differentiation of the first eyespot ring. A second morphogen is then produced, modifying the chromatic properties of the wing background pigment precursor, inducing the differentiation of a second ring. The model simulates the general structural organization of eyespots, their phenotypic plasticity and seasonal variability, and predicts effects from microsurgical manipulations on pupal wings as reported in the literature.  相似文献   

4.
5.
Evolutionary Developmental Biology aims for a mechanistic understanding of phenotypic diversity, and present knowledge is largely based on gene expression and interaction patterns from a small number of well-known model organisms. However, our understanding of biological diversification depends on our ability to pinpoint the causes of natural variation at a micro-evolutionary level, and therefore requires the isolation of genetic and developmental variation in a controlled genetic background. The colour patterns of Heliconius butterflies (Nymphalidae: Heliconiinae) provide a rich suite of naturally occurring variants with striking phenotypic diversity and multiple taxonomic levels of variation. Diversification in the genus is well known for its dramatic colour-pattern divergence between races or closely related species, and for Müllerian mimicry convergence between distantly related species, providing a unique system to study the development basis of colour-pattern evolution. A long history of genetic studies has showed that pattern variation is based on allelic combinations at a surprisingly small number of loci, and recent developmental evidence suggests that pattern development in Heliconius is different from the eyespot determination of other butterflies. Fine-scale genetic mapping studies have shown that a shared toolkit of genes is used to produce both convergent and divergent phenotypes. These exciting results and the development of new genomic resources make Heliconius a very promising evo-devo model for the study of adaptive change.  相似文献   

6.
7.
8.
Developing organisms are thought to be modular in organization so that traits in different modules evolve independently whereas traits within a module change in a concerted manner. The eyespot pattern in Bicyclus anynana butterflies provides an ideal system where morphological modularity can be dissected and different levels of genetic integration analyzed. Several lines of evidence show that all eyespots in an individual butterfly are genetically integrated, suggesting that the whole pattern, rather than the separate eyespots, should be considered as a single character. However, despite the strong genetic correlations between the two eyespots on the dorsal forewing of B. anynana, there is great potential for independent changes. Here we use laboratory lines selected in different directions for the size of those eyespots to study correlated responses in the whole eyespot pattern. We show clear changes in eyespot size across all wing surfaces, which depend on eyespot position along the anterior-posterior axis. There are also changes in the number of extra eyespots and in eyespot color composition but no changes in eyespot position relative to wing margin. Our analysis of eyespot pattern modularity is discussed in the light of what is known about the cellular and genetic mechanisms of eyespot formation and the great potential for evolutionary diversification in butterfly wing patterns.  相似文献   

9.
Character optimization methods can be used to reconstruct ancestral states at the internal nodes of phylogenetic trees. However, seldom are these ancestral states visualized collectively. Ancient Wings is a computer program that provides a novel method of visualizing the evolution of several morphological traits simultaneously. It allows users to visualize how the ventral hindwing pattern of 54 butterflies in the genus Bicyclus may have changed over time. By clicking on each of the nodes within the evolutionary tree, the user can see an animation of how wing size, eyespot size, and eyespot position relative the wing margin, have putatively evolved as a collective whole. Ancient Wings may be used as a pedagogical device as well as a research tool for hypothesis-generation in the fields of evolutionary, ecological, and developmental biology.  相似文献   

10.
11.
Studies examining and using pattern variation in insects for identification and characterization of individuals and populations have been limited by the methods available for quantifying wing patterns objectively. In this paper, differences in wing pattern are demonstrated statistically using moment invariant data sets generated automatically from digitized images of the speckled wood butterfly, Pararge aegeria (Linnaeus). Studies with other biological subjects have already shown moment invariants to work well with outline shapes and silhouettes. A pilot study with replicated monochrome photographs of a single butterfly showed the method could detect pattern differences between wing surfaces, even in the presence of simulated wing fading and damage. In a further study of the wings of 228 specimens, multivariate analyses of variance using the moment data reliably detected differences between groups of butterflies according to sex, geographical origin and culture history. Potential applications and future improvements of the moment methodology are considered.  相似文献   

12.
13.
Understanding the generation of phenotypic variation is an important challenge for modern evolutionary biology, and butterfly wing patterns are an exciting system that can shed some light on this issue. Here, we report on recent advances in the genetics of Bicyclus anynana butterflies. This system provides the potential for a fully integrated study of the evolutionary and developmental processes underlying diversity in morphology.  相似文献   

14.
15.
Super-hydrophobic characteristics of butterfly wing surface   总被引:5,自引:0,他引:5  
1 Introduction Wettability and repellency are important propertiesof solid surface. Among various factors, surface energyand surface roughness are the dominant factors for wet-tability. When the surface energy is lowered, the hydro-phobicity is enhanced. However, even a material with thelowest surface energy gives a water contact angle of onlyaround 120 ? [1]. For higher hydrophobicity, providing aproper surface roughness is required [2 í 5] …  相似文献   

16.
The ability to fly is crucial for migratory insects. Consequently, the accumulation of damage on the wings over time can affect survival, especially for species that travel long distances. We examined the frequency of irreversible wing damage in the migratory butterfly Vanessa cardui to explore the effect of wing structure on wing damage frequency, as well as the mechanisms that might mitigate wing damage. An exceptionally high migration rate driven by high precipitation levels in their larval habitats in the winter of 2018–2019 provided us with an excellent opportunity to collect data on the frequency of naturally occurring wing damage associated with long-distance flights. Digital images of 135 individuals of V. cardui were collected and analyzed in Germany. The results show that the hindwings experienced a greater frequency of damage than the forewings. Moreover, forewings experienced more severe damage on the lateral margin, whereas hindwings experienced more damage on the trailing margin. The frequency of wing margin damage was higher in the painted lady butterfly than in the migrating monarch butterfly and in the butterfly Pontia occidentalis following artificially induced wing collisions. The results of this study could be used in future comparative studies of patterns of wing damage in butterflies and other insects. Additional studies are needed to clarify whether the strategies for coping with wing damage differ between migratory and nonmigratory species.  相似文献   

17.
18.
Otaki JM 《Zoological science》2011,28(11):817-827
The determination of color patterns of butterfly wing eyespots has been explained by the morphogen concentration gradient model. The induction model has been proposed recently as a more realistic alternative, in which the eyespot-specifying signal does not depend entirely on focal activity. However, this model requires further elaboration and supporting evidence to be validated. Here, I examined various color patterns of nymphalid butterflies to propose the mechanics of the induction model. Based on cases in which an eyespot light ring is identical to the background in color, I propose that eyespots are fundamentally composed of dark rings and non-dark "background" spaces between them. In the induction model, the dark-ring-inducing signal that is released from a prospective eyespot focus (the primary organizing center) as a slow-moving wave effects both selfenhancement and peripheral induction of the dark-ring-inhibitory signal at the secondary organizing centers, resulting in an eyespot that has alternate dark and light rings. Moreover, there are cases in which an unseen "imaginary light ring" surrounds an eyespot proper and in which PFEs are integrated into the eyespot. It appears that PFEs constitute a periodic continuum of eyespot dark rings; thus, a background space between the eyespot and a PFE is mechanistically equivalent to eyespot light rings. The eyespot dark-ring-inducing signals and PFE-inducing signal are likely to be identical in quality, but released at different times from the same organizing center. Computer simulations based on the reaction-diffusion system support the feasibility of the induction model.  相似文献   

19.
20.
Evolutionary studies typically focus on adaptations to particular environmental conditions, thereby often ignoring the role of possible constraints. Here we focus on the case of variation in dorsal wing melanization in a satyrine butterfly Pararge aegeria. Because melanin is a complex polymer, its synthesis may be constrained if ambient conditions limit the resource budget. This hypothesis was tested by comparing melanization among butterflies that fed as larvae on host grasses experiencing different drought-stress treatments. Treatment differences were validated both at the level of the host plant (nitrogen, carbonate, and water content) and of the butterfly (life-history traits: survival, development time, and size at maturity). Melanization rate was measured as average gray value of the basal dorsal wing area. This area, close to the thorax, is known to be functionally significant for basking in order to thermoregulate. Individuals reared on drought-stressed host plants developed paler wings, and development of darker individuals was slower and less stable as estimated by their level of fluctuating asymmetry. These results provide evidence that melanin is indeed costly to synthesize, and that differences in environmental quality can induce phenotypic variation in wing melanization. Therefore, studies dealing with spatial and/or temporal patterns of variation in wing melanization should not focus on adaptive explanations alone, but rather on a cost-benefit balance under particular sets of environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号