首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
There is an apparently stark contrast in ecophysiological adaptation between the poikilochlorophyllous desiccation-tolerant (PDT) angiosperm Xerophyta scabrida and homoichlorophyllous desiccation-tolerant (HDT) lichens and bryophytes. We summarise measurements on Xerophyta and on the temperate dry-grassland lichen Cladonia convoluta and the moss Tortula ruralis through a cycle of desiccation and rehydration. Considered in a broad ecological and evolutionary context, desiccation tolerance in general can be seen as evading some of the usual problems of drought stress, and these plants as particular instances drawn from an essentially continuous spectrum of adaptive possibilities – related on the one hand to the physical scale of the plants, and on the other to the time-scale of wetting and drying episodes.  相似文献   

5.
6.
Desiccation tolerance in vegetative plant cells   总被引:17,自引:0,他引:17  
  相似文献   

7.
8.
Bryophytes are a non-monophyletic group of three major lineages (liverworts, hornworts, and mosses) that descend from the earliest branching events in the phylogeny of land plants. We postulate that desiccation tolerance is a primitive trait, thus mechanisms by which the first land plants achieved tolerance may be reflected in how extant desiccation-tolerant bryophytes survive drying. Evidence is consistent with extant bryophytes employing a tolerance strategy of constitutive cellular protection coupled with induction of a recovery/repair mechanism upon rehydration. Cellular structures appear intact in the desiccated state but are disrupted by rapid uptake of water upon rehydration, but cellular integrity is rapidly regained. The photosynthetic machinery appears to be protected such that photosynthetic activity recovers quickly. Gene expression responds following rehydration and not during drying. Gene expression is translationally controlled and results in the synthesis of a number of proteins, collectively called rehydrins. Some prominent rehydrins are similar to Late Embryogenesis Abundant (LEA) proteins, classically ascribed a protection function during desiccation. The role of LEA proteins in a rehydrating system is unknown but data indicates a function in stabilization and reconstitution of membranes. Phylogenetic studies using a Tortula ruralis LEA-like rehydrin led to a re-examination of the evolution of desiccation tolerance. A new phylogenetic analysis suggests that: (i) the basic mechanisms of tolerance seen in modern day bryophytes have changed little from the earliest manifestations of desiccation tolerance in land plants, and (ii) vegetative desiccation tolerance in the early land plants may have evolved from a mechanism present first in spores.  相似文献   

9.
The desiccation-tolerant moss Tortula ruralis [Hedw.] Gaerten., Meyer & Scherb. has both a constitutive protection system and an active rehydration induced recovery mechanism apparently unique to bryophytes. Immediately following rehydration, desiccated T.ruralis gametophytes produce a set of polypeptides whose synthesis is unique to the rehydrated state. We report the construction of a cDNA expression library from the polysomal mRNA of desiccated gametophytes and the single-pass sequencing of randomly selected clones. 152 expressed sequence tags (ESTs) were generated representing more than 60,000 bp of non-redundant DNA sequence. 44 ESTs (29%) demonstrated significant homology to previously identified nucleotide and/or polypeptide sequences, such as ribosomal proteins, desiccation-related peptides, early light-inducible proteins and a V-type ATPase. Analysis of a subset of these homologous ESTs reveals that codon preference in T.ruralis is similar to that of vascular plants, particularly the Magnoliopsida. 108 ESTs (71%) demonstrated no significant homology to deposited sequences and represent a large number of novel plant genes. Analysis of these ESTs will define the range of genes involved in cellular repair and recovery and may provide greater insight to the complex phenotype of vegetative desiccation-tolerance.  相似文献   

10.
11.
The desiccation-tolerant plant Sporobolus stapfianus was subjectedto slow dehydration and to rehydration either as a silica gel-drieddetached leaf or as an airdried plant. In detached leaves dehydrationresulted in a lower relative water content in comparison withleaves dried on the plant. Water loss caused a reduction inchlorophyll, carotenoid and lipid contents and an increase inconjugated dienes. In detached leaves, ultrastructure was alsoaffected by dehydration, showing damaged cells with alteredchloroplasts which retained large quantities of starch and lipid-likeinclusions in the stroma. Upon rehydration a continuous degradationof the chemical composition and cell organization was observedwith a further increase in peroxidation. Leaves dehydrated onthe plant showed degradation of chlorophyll and lipids, whereascarotenoids increased and conjugated dienes decreased. Desiccationcaused a vacuolar fragmentation and a decline in starch, whereaschloroplasts underwent slight alterations. Following rewateringa full recovery of chlorophyll and lipids occurred, while carotenoidsand dienes remained constant. Starch increased in the chloroplastsand there was complete recovery of the ordered cell arrangementand chloroplast organization. Of the chloroplast polar lipids,in both sets of leaves desiccation caused a reduction only inmonogalactosyldiacylglycerol, while phospholipids showed anopposite pattern, increasing in air-dried leaves and decreasingin detached leaves. Rewatering of leaves desiccated on the plantled to a complete recovery of the lipid composition, whereasdetached leaves suffered a complete lipid degradation with theloss of polyunsaturated fatty acids. Key words: Desiccation tolerance, lipids, resurrection plants, Sporobolus stapfianus, ultrastructure  相似文献   

12.
13.
Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.  相似文献   

14.
苔藓植物耐旱机制研究进展   总被引:11,自引:0,他引:11  
耐旱藓类快速脱水并存活的能力可由快速建立起来的对环境变化的耐受机制来反映,保护细胞完整性的组成型机制与修复细胞损伤的诱导机制协同作用使苔藓植物渡过干旱胁迫.再水化时光合系统原初恢复非常迅速;ABA处理可显著改变PSⅡ的生理特征;基因表达的变化主要由翻译调控引起;脱水组织中贮存mRNPs既保护了mRNAs,又加快了再水化修复速度.山墙藓(Tortula ruralis)是耐旱研究较多的一个种,已建立了表达序列文库(EST),将会成为耐旱研究的重要模式植物.  相似文献   

15.
Misra, S. and Bewley, J. D. 1986. Desiccation of Phaseolus vulgansseeds during and following germination, and its effect uponthe translatable mRNA population of the seed axes.—J.exp. BoL 37: 364–374. After imbibition and germination, seeds of P. vulgaris passfrom a stage where they are insensitive to desiccation to astage where they are sensitive. Desiccation of seeds duringthe sensitive stage results in an almost total impairment ofprotein synthesis upon subsequent rehydration. Seeds desiccatedduring the desiccation-tolerant stage, however, resume proteinsynthesis at almost control levels. The protein patterns obtained following in Vitro translationof bulk RNA from fresh imbibed, desiccated, and desiccated-rehydratedseed axes were qualitatively similar at 5 HAI (the desiccation-tolerant stage). The drying treatment resulted in increasedintensity of extant proteins at 5 and 12 HAI. At 12 HAI (thetransition stage between the desiccation-tolerant and desiccation-intolerantphases) desiccation and subsequent rehydration triggered synthesisof a unique set of proteins-the rehydration proteins. At 20HAI (the desiccation-intolerant stage) desiccation resultedin an overall decline in the intensity of proteins synthesizedin vitro. Also the rehydration proteins were not synthesizedin response to a drying and rehydration treatment at this time. Key words: Seed germination, desiccation, mRNA, in vitro translation, Phaseolus vulgaris  相似文献   

16.
17.
苔藓植物耐旱机制研究进展   总被引:1,自引:0,他引:1  
耐旱藓类快速脱水并存活的能力可由快速建立起来的对环境变化的耐受机制来反映,保护细胞完整性的组成型机制与修复细胞损伤的诱导机制协同作用使苔藓植物渡过干旱胁迫。再水化时光合系统原初恢复非常迅速;ABA处理可显著改变PSⅡ的生理特征;基因表达的变化主要由翻译调控引起;脱水组织中贮存mRNPs既保护了mRNAs, 又加快了再水化修复速度。山墙藓(Tortula ruralis)是耐旱研究较多的一个种,已建立了表达序列文库(EST),将会成为耐旱研究的重要模式植物。  相似文献   

18.
Accumulation of soluble carbohydrates during dehydration stress is thought to be a very important mechanism for the acquisition of desiccation tolerance. Despite the proposed importance of soluble carbohydrate accumulation (especially sucrose), nothing is known about the cellular localization of carbohydrates in desiccation-tolerant plants. The present study proposes a novel and selective method for the in situ localization of sucrose and glucose in the desiccation-tolerant plant Sporobolus stapfianus. The detection of sucrose and glucose is based on a series of coupled enzymatic reactions leading to the formation of NADH. Iodonitrotetrazolium (INT) reacts with NADH, thereby providing the red-colored insoluble INT-formazan. Stained tissue sections were immediately visualized using light microscopy. Localization of the respective sugars was site specific. Sucrose was visualized in all leaf cell types during dehydration: vascular bundles, bundle sheath cells, mesophyll cells and epidermal cells. Similarly, glucose was shown to be localized in the same leaf compartments as reported for sucrose. This is the first report that describes sucrose localization in dehydrating leaf tissues of a "resurrection" plant. We conclude that, during dehydration stress, sucrose accumulates in all viable tissues; these results are in agreement with the previously proposed theories about its function as a cellular protectant.  相似文献   

19.
Peroxidase activity of desiccation-tolerant loblolly pine somatic embryos   总被引:1,自引:0,他引:1  
Summary Desiccation tolerance can be induced by culturing somatic embryos of loblolly pine (Pinus taeda L.) on medium supplemented with 50 μM abscisic acid (ABA) and/or 8.5% polyethylene glycol (PEG6000). Scanning electron microscopy of desiccated somatic embryos showed that the size and external morphology of the desiccation-tolerant somatic embryos recovered to the pre-desiccation state within 24–36 h, whereas the non-desiccation-tolerant somatic embryos did not recover and remained shriveled, after rehydration. Peroxidase activity of desiccated somatic embryos increased sharply after 1 d of desiccation treatment at 87% relative humidity (RH), and desiccation-tolerant somatic embryos had higher peroxidase activity compared to sensitive somatic embryos. Higher peroxidase activity of desiccation-tolerant somatic embryos may have allowed them to catalyze the reduction of H2O2 produced by drought stress, and protected them from oxidative damage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号