首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phospholipase D (PL-D) activity per mg protein of whole homogenate increased 5.1 fold between Embryonic (E) day 17 and Postpartum (P) day 14 and slightly decreased by P 30 days. This was due to the decrease of PL-D activity of the P2 fraction. The PL-D activity of P2 and P3 fractions increased 11.2 and 6.1 fold respectively between E 17 and P 14. The 3 base exchange enzyme (BEE) activities per mg protein of whole homogenate increased up to P 14 or P 21 and then decreased. This decrease was greater in the P2 fraction and the P3 fraction increased after P14. Brains from 1 day to 25 month old rats were dissected into 7 separate regions and both PL-D and BEE activities were measured. In adult rats, the hippocampus and hypothalamus had the highest PL-D activities while medulla+pons and cerebellum had the lowest PL-D activities. The developmental patterns of 5 regions except for hippocampus and hypothalamus were similar. PL-D activity in the hippocampus was maximum at P 7 followed by a steep decrease till P30 suggesting that the PL-D activity of the hypothalamus develops later and that of the hippocampus develops earlier than any other region. The distributions of BEE activities were quite different from those of PL-D activities. In adult rats, the cerebellum had the highest activity while the striatum and medulla+pons had the lowest. The BEE activities of cerebellum were lowest at P 1 and showed steep increase during the next 2 weeks.To whom to address reprint request are to be sent.  相似文献   

2.
Ins(1,4,5)P3 3-kinase and 5-phosphatase are important enzymes responsible for the metabolism of Ins(1,4,5)P3, a second messenger for mobilization of intracellular Ca2+ stores. Focal cerebral ischemia induced in Long Evans rats through occlusion of the right middle cerebral artery (MCA) and both common carotid arteries resulted in a time-dependent decrease in the 3-kinase activity but not the 5-phosphatase activity. Approximately 50% of the 3-kinase activity in the cerebral cortex of the right MCA territory disappeared after 60 min of ischemia, and the enzyme activity was not restored during reperfusion. Reperfusion for 24 hr after a 60 min ischemic insult almost abolished the 3-kinase activity but the 5-phosphatase activity remained unaltered. These results suggest that the Ins(1,4,5)P3 3-kinase is one of the target enzymes of cerebral ischemia. The changes in Ins(1,4,5)P3 metabolism may be associated with the changes in intracellular Ca2+ homeostasis that underlies the pathophysiology of neuronal cell death.  相似文献   

3.
PtdIns(4,5)P(2) generally results from phosphorylation of PtdIns(4)P by the phosphatidylinositol 5-kinase (PtdIns5-K). Its hydrolysis by phospholipase C (PLC) yields inositol 1,4,5-trisphosphate and diacylglycerol, which stimulates protein kinase C (PKC). We show that epithelial cells of the cockroach rectum contain three different inositol lipids: PtdIns(4,5)P(2), PtdIns(4)P, and PtdIns. They are composed of six major fatty acids: palmitic (16:0) stearic (18:0), oleic (18:1n--9), linoleic (18:2n--6), linolenic (18:3n--3), and arachidonic (20:4n-6) acids. The fatty acid preference of each of the above enzymes was evaluated by incorporating different fatty acids in pairs into membrane lipids. Incorporation of 16:0 plus 18:1n--9 provoked an increase in PtdIns(4,5)P2-PLC activity and a decrease in PtdIns5-K activity. In contrast, incorporation of 16:0 plus 18:3n--3 led to a potentiation of PtdIns5-K activity and a decrease in PtdIns(4,5)P(2)-PLC activity. Furthermore, PLC and PtdIns5-K acted preferentially on substrates containing 18:3n--3, and 18:3n--3-containing diacylglycerol specifically potentiated PKC activity. Thus, we propose that the fatty acids that make up the phosphoinositides function as intracellular modulators of the activity of certain enzymes.  相似文献   

4.
The activity of glycerophosphorylcholine cholinephosphodiesterase was quantified in the diencephalon, mesencephalon, cerebral hemispheres, olfactory bulb and cerebellum postnatally for P5 until P70 of rat brain. The initially low activities gradually increase to adult levels by P30. The patterns of regional development are reminescent of those previously described for choline acetyltransferase activity. It is suggested that these may be functionally linked in neuronal cells. The activity of glycerophosphorylcholine phosphocholine phosphodiesterase was also determined and found to be similar although only one half as active as the enzyme liberating choline. The present experiments show that both the GPC phosphocholine phosphodiesterase and the GPC choline phosphodiesterase are regionally and developmentally regulated in rat brain.  相似文献   

5.
Mitochondria and high-speed supernatant were prepared from rat brain homogenates at 0–50 days of age. The development of malonyl-CoA synthetase, malonyl-CoA decarboxylase, coenzyme A-transferases and acetyl-CoA hydrolase was examined and compared to de novo fatty acid biosynthesis. The specific activity of malonyl-CoA synthetase rose steeply between 6 and 10 days, and this sudden increase coincided with peak specific activity of fatty acid synthetase. Similarly, malonate activation by coenzyme A-transfer from succinyl-CoA increased rapidly at the same time. Transfer of the coenzyme A moiety from acetoacetyl-CoA was only minimal during this period. Brain mitochondria had active malonyl-CoA decarboxylase which showed an almost linear increase of specific activity between 0 and 50 days. Acetyl-CoA resulting from malonyl-CoA decarboxylation underwent enzymatic hydrolysis to acetate and free coenzyme A. Only traces of acetoacetate were recovered. In mitochondria, acetyl-CoA hydrolase increased progressively whereas the cytosolic enzyme had high specific activity at birth which declined slowly during maturation.  相似文献   

6.
To study an enzymatic basis for the postnatal changes in intestinal glycosylation, the activities of sialyl- and fucosyltransferases were determined in the particulate fraction of mucosal cells prepared from rat small intestine of various ages. The results show that sialyltransferase activity was present in increased levels compared to adults during the preweaning period (1-2 weeks) and subsequently declined 5-fold to adult levels after weaning, while fucosyltransferase activity was decreased compared to adults in the first 3 weeks of life, rapidly increased at 4 weeks, and reached adult levels (10-fold) by 5 weeks. The changes in both sialyl- and fucosyltransferase activities were reflected by the membranous content of glycosidic-bound sialic acid and fucose, respectively. Cortisone injection precociously induced a decreased sialyltransferase activity and an increased fucosyltransferase activity in 2-week-old suckling rats. This study indicates that the activities of sialyl- and fucosyltransferases were reciprocally related and modulated by cortisone action in the developing intestine. These enzyme changes may be responsible for the previously noted shift from sialylation to fucosylation of the intestinal mucosa during maturation.  相似文献   

7.
The proportion of 26 fatty acids (FA) in the lipids of the cerebral cortex, subcortical formations (the thalamus, hypothalamus and basal ganglia) and the medulla oblongata was studied in rats aged 5, 10, 14 and 90 days. Very marked developmental changes in the proportion of the various FA were demonstrated in the different parts of the brain. In the cerebral cortex the proportion of 17:1 rose by 285%, 18:3 n-3 by 1820% and 22:6 n-3 by 80%, while the proportion of 14:0, 16:0 and 16:1 fell significantly. In the tissue of subcortical formations we found an increase in the proportion of FA with 18 carbons (18:0 by 40%, 18:1 by 100%, 18:3 n-3 by over 5000%) and a decrease in the proportion of 14:0, 16:0, 16:1 and 20:4 n-6. The situation in medulla oblongata tissue was similar to the one in subcortical formations. On comparing the proportion of FA in individual parts of the CNS in the same age category, we found the smallest number of statistically significant differences in 5-day-old rats. In adult rats we found significant differences chiefly in the proportion of palmitic acid (16:0), oleic acid (18:1), linolenic acid (18:3 n-3) and acids with 20-22 carbons.  相似文献   

8.
Developmental changes in brain angiotensin II receptors in the rat.   总被引:1,自引:0,他引:1  
M A Millan  A Kiss  G Aguilera 《Peptides》1991,12(4):723-737
AII binding and distribution were measured in rat brain during development by autoradiographic techniques using radioiodinated [Sar1,Ile8]AII. At all ages, from 2 days to 7 weeks, binding was present in the circumventricular organs, and areas related to pituitary hormone secretion and modulation of sympathetic activity. At early stages of development, AII binding was transiently expressed in a number of motor- and sensory-related areas. These findings support a role for AII in the control of water intake and autonomic activity at all stages of development, and suggest that the peptide may be involved in the maturation of neuronal function during development.  相似文献   

9.
1. Developmental aspects of L-lysine-ketoglutarate reductase, the first enzyme in saccharopine pathway of L-lysine degradation in rat liver and brain tissues were studied. 2. Although the adult rat brain shows negligible activity, the enzyme activity was shown to be highly active during the early stages of development. 3. The enzyme activity gradually decreased through development in the brain, whereas it gradually increased in the liver, establishing the fact that the saccharopine pathway is the major pathway in liver. 4. Our results also show that glucagon stimulated the induction of this enzyme by 2-3-fold in both adult liver and brain tissues.  相似文献   

10.
Human α-1-proteinase inhibitor is inactivated by human myeloperoxidase in the presence of hydrogen peroxide and chloride ion. Several antiarthritic drugs and related compounds, including many containing gold, were tested as inhibitors of the myeloperoxidase system. Of the twenty-six compounds used, twenty-two inhibited. The most important feature of these was the presence of a sulfhydryl group. The most effective compounds also were the most hydrophobic. The presence of gold, on the other hand, made little difference to the amount of inhibition. These drugs appear to have many effects, and their inhibition of the myeloperoxidase system suggests that this could be one of them.  相似文献   

11.
A complete separation of myo-inositol 1,4,5-[4,5-(32)P]trisphosphate prepared from human erythrocytes, and myo-[2-3H]inositol 1,3,4-trisphosphate prepared from carbachol-stimulated rat parotid glands [Irvine, Letcher, Lander & Downes (1984) Biochem. J. 223, 237-243], was achieved by anion-exchange high-performance liquid chromatography. This separation technique was then used to study the metabolism of these two isomers of inositol trisphosphate in carbachol-stimulated rat parotid glands. Fragments of glands were pre-labelled with myo-[2-3H]inositol, washed, and then stimulated with carbachol. At 5s after stimulation a clear increase in inositol 1,4,5-trisphosphate was detected, with no significant increase in inositol 1,3,4-trisphosphate. After this initial lag however, inositol 1,3,4-phosphate rose rapidly; by 15s it predominated over inositol 1,4,5-trisphosphate, and continued to rise so that after 15 min it was at 10-20 times the radiolabelling level of the 1,4,5-isomer. In contrast, after the initial rapid rise (maximal within 15s), inositol 1,4,5-trisphosphate levels declined to near control levels after 1 min and then rose again very gradually over the next 15 min. When a muscarinic blocker (atropine) was added after 15 min of carbachol stimulation, inositol 1,4,5-trisphosphate levels dropped to control levels within 2-3 min, whereas inositol 1,3,4-trisphosphate levels took at least 15 min to fall, consistent with the kinetics observed earlier for total parotid inositol trisphosphates [Downes & Wusteman (1983) Biochem. J. 216, 633-640]. Phosphatidylinositol bisphosphate (PtdInsP2) from stimulated and control cells were degraded chemically to inositol trisphosphate to seek evidence for 3H-labelled PtdIns(3,4)P2. No evidence could be obtained that a significant proportion of PtdInsP2 was this isomer; in control tissues it must be less than 5% of the total PtdInsP2 radiolabelled by myo-[2-3H]inositol. These data indicate that, provided that inositol 1,4,5-trisphosphate is studied independently of inositol 1,3,4-trisphosphate, the former shows metabolic characteristics consistent with its proposed role as a second messenger for calcium mobilization. The metabolic profile of inositol 1,3,4-trisphosphate is entirely different, and its function and source remain unclear.  相似文献   

12.
The patterns of brain enzymes linked to energy metabolism have been determined in rats aged between 3 and 21 months and compared to those of the developing brain as an estimate of the senescent energy capacity of this organ. During aging, pyruvate kinase increases, pointing towards an enhancement of the glucose-dependence of this organ. However, NAD-isocitrate dehydrogenase declines, suggesting a reduction of Krebs cycle activity in the aged rat brain. An increase in cytoplasmic NAD-malate dehydrogenase found during aging could provide an alternative mechanism of NAD recovery.  相似文献   

13.
Phospholipase D (PLD2) produces phosphatidic acid (PA), which is converted to 1,2 diacylglycerol (DAG) by phosphatidate phosphohydrolase (PAP2). Since PA and DAG regulate Ca(2+) movements, we examined PLD2 and PAP2 in the sarcolemma (SL) and sarcoplasmic reticular (SR) membranes from hearts subjected to ischemia and reperfusion (I-R). Although SL and SR PLD2 activities were unaltered after 30 min ischemia, 5 min reperfusion resulted in a 36% increase in SL PLD2 activity, whereas 30 min reperfusion resulted in a 30% decrease in SL PLD2 activity, as compared to the control value. SR PLD2 activity was decreased (39%) after 5 min reperfusion, but returned to control levels after 30 min reperfusion. Ischemia for 60 min resulted in depressed SL and SR PLD2 activities, characterized with reduced V(max) and increased K(m) values, which were not reversed during reperfusion. Although the SL PAP2 activity was decreased (31%) during ischemia and at 30 min reperfusion (28%), the SR PAP2 activity was unchanged after 30 min ischemia, but was decreased after 5 min reperfusion (25%) and almost completely recovered after 30 min reperfusion. A 60 min period of ischemia followed by reperfusion caused an irreversible depression of SL and SR PAP2 activities. Our results indicate that I-R induced cardiac dysfunction is associated with subcellular changes in PLD2 and PAP2 activities.  相似文献   

14.
15.
Mammalian cells employ a network of DNA repair pathways. DNA repair is required during development to ensure accuracy of DNA replication in the rapidly dividing embryonic cells and to maintain genomic integrity in the mature organism. An enzyme involved in repair of replication errors generated on either normal or oxidatively damaged DNA templates, is the mammalian ortholog of the Escherichia coli MutY DNA glycosylase (MYH). We show that levels of MYH isoform, detected at the E14 embryonic stage, decrease during embryonic and neonatal rat development, while new isoforms appear and gradually increase in the neonate and adult brain. The temporally declining expression of embryonic MYH resembles the pattern of proliferating cell nuclear antigen (PCNA) decline during this period. Immunohistochemical analyses of the embryonic brain show that cells staining for MYH initially coincide with cells staining for PCNA. At later stages PCNA declines, while MYH is detected primarily outside the nucleus. MutY-like glycosylase activity for adenines misincorporated opposite oxidized guanines is detected in both, embryonic and adult brain extracts. Together, these findings suggest that in proliferating embryonic cells, MYH might be primarily involved in post replicative repair of nuclear DNA, whereas in post mitotic neurons, in the repair of mitochondrial DNA.  相似文献   

16.
Activity of cytochrome c oxidase and citrate synthase in rat heart homogenates was determined in 5-, 15-, 28- and 60-day-old rats. The activity of both enzymes increased during postnatal development but their changes followed different kinetics. The membrane-bound cytochrome c oxidase reached its adult values during the early postnatal period, i.e. between days 5 and 15, whereas soluble matrix-localized citrate synthase also continued to increase between days 15 and 60. Our data indicate a relative excess of cytochrome c oxidase in neonatal cardiocytes.  相似文献   

17.
Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain   总被引:7,自引:0,他引:7  
The ATP-dependent, calmodulin-sensitive 3-kinase responsible for the conversion of D-myo-inositol 1,4,5-trisphosphate to D-myo-inositol 1,3,4,5-tetrakisphosphate has been purified 2,700-fold from rat brain to a specific activity of 2.3 mumol/min/mg protein. A method of purification is described involving chromatography on phosphocellulose, Orange A dye ligand, calmodulin agarose, and hydroxylapatite columns. Neither the highly purified enzyme nor enzyme eluting from the phosphocellulose column were activated by Ca2+. However, enzyme in the 100,000 x g supernatant from rat brain was activated by Ca2+ over the range from 10(-7) to 10(-6) M and Ca2+ sensitivity of the purified enzyme was restored by the addition of calmodulin. The enzyme has a catalytic subunit Mr of 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography of the purified enzyme on a Superose 12 column gave a Mr value of 70,000, indicating that the purified enzyme was present as a monomer. In contrast, the 100,000 x g supernatant and the purified enzyme after addition of calmodulin and 10(-6) M Ca2+ chromatographed on size exclusion chromatography with a Mr of 150,000-160,000. These results imply that the native enzyme is a dimeric structure of two catalytic subunits plus calmodulin. The purified enzyme showed a Km of 0.21 +/- 0.08 microM for D-myo-inositol 1,4,5-trisphosphate and had a pH optimum of 8.5. Addition of calmodulin increased both the Km and the Vmax of the purified enzyme about 2-fold. The high affinity of the 3-kinase for D-myo-inositol 1,4,5-trisphosphate together with its activation by Ca2+/calmodulin suggests that this enzyme may exert an important regulatory role in inositol phosphate signaling by promoting the formation of additional inositol polyphosphate isomers.  相似文献   

18.
Summary As the salivary glands are interesting tissues to study proliferation, we studied the activities of prolinase and prolidase using Pro-Ala and Pro-Hyp as substrates, respectively, in developing rat salivary glands between day 1 and week 10 after birth. Developmental changes of prolinase activity in the submandibular and sublingual glands were similar to those in the parotid gland, which steadily increased and reached the adult level by 20–25 days after birth. However, the changes in the activity of prolidase in the submandibular and sublingual glands were different from those in the parotid gland: the activity in the parotid gland slowly increased with maturation and reached a maximum level on day 30, but the activity in the submandibular and sublingual glands continuously increased with maturation. When thyroxine was injected every two days from day 1 to day 19, both enzyme activities were induced precociously in the parotid gland but not in the submandibular and sublingual glands. On the study of regional distribution in rat tissues, the correlation coefficient between prolinase and prolidase activities was high in the peripheral but not high in the brain regions.These results indicate that the physiological roles of prolinase and prolidase are very similar but not the same.  相似文献   

19.
Gestational and postnatal changes of microsomal NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase activities were examined in rat brain. The specific activity of NADH:cytochrome b5 reductase was high at 18-19 days of gestational age, decreased to a minimum at 4 to 6 days after birth and increased thereafter. An essentially similar developmental pattern was observed for the specific activity of NADPH:cytochrome c reductase. In contrast, the specific activities of these reductases in liver microsomes were low, did not display a peak during gestation and increased steadily to a maximum at 40-50 days after birth. The rate of incorporation of [2-14C]malonyl-CoA into palmitoyl-CoA in brain microsomes was found to be high in the foetus, sharply decreased to a minimum at the time of birth and increased thereafter. The activity of fatty acid elongation in liver microsomes was much less than that in brain during gestation and increased rapidly after birth to values at 50-60 days 20-fold greater than the foetal activity. NADH and NADPH were equally effective for brain microsomal fatty acid elongation. Regional distribution of cytochrome reductase activities and the activity of fatty acid elongation showed the lowest specific activity in cerebellum. These results suggest that brain microsomal electron transport may be correlated with the developmental alteration in fatty acid elongation.  相似文献   

20.
—The distribution of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (EC 1.1.1.34) relative to that of several biochemical markers has been studied in subcellular fractions prepared from the brains of rats, aged 4 days to adult, by differential centrifugation. In the brains of 10-day-old animals fractions which sedimented at 800 g (P1 and 9000 g (P2) contained 28% and 65% respectively of the total reductase activity. A similar distribulion of the microsomal marker, NADPH-cytochrome c reductase, suggested that the HMG-CoA reductase activity in the low-speed pellets was due to substantial contamination of these fractions with endoplasmic reticulum. When P2 was fractionated on a discontinuous sucrose gradient, the distributions of protein, RNA and NADPH-cytochrome c reductase paralleled that of HMG-CoA reductase, indicaling a non-specific association of endoplasmic reliculum and HMG-CoA reductase with all of the structures sedimenting in P2. As brain maturation proceeded and a greater percentage of total brain protein (primarily associated with myelin) sedimenled in P1, the subcellular distributions of HMG-CoA reductase and the microsomal marker changed in a parallel way. By 21 days P1 contained nearly all of the reductase activity. Because the specific activity of HMG-CoA reductase in P1 decreased steadily between 4 and 21 days, while the specific activity of 2′:3′-cyclic nucleotide 3′-phosphohydrolase in this fraction increased in a coordinate fashion, we conclude that the reductase is not an integral component of myelin, and probably is associated exclusively with the endoplasmic reticulum included in P1. In view of the developmental changes in the distribution of HMG-CoA reductase among subcellular fraclions, we suggest that whole homogenates (or comparable tissue extracts) should be utilized to evaluate reductase activity in the developing brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号