首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cloud forests are distributed in the Neotropics, from northern Mexico to Argentina, under very specific ecological conditions, namely slopes with high humidity input from clouds and mist. Its distribution in Mesoamerica is highly fragmented, similar to an archipelago, and taxa are thus frequently represented as sets of isolated populations, each restricted to particular mountain ranges and often showing a high degree of divergence, both morphologically and genetically. The common bush-tanager (Chlorospingus ophthalmicus, Aves: Thraupidae) inhabits cloud forests from eastern and southern Mexico south to northwestern Argentina. Here we use 676bp of mtDNA (around the ATPase 8 gene) to explore the genetic variation and phylogeographic structure of the Mexican populations of C. ophthalmicus. Phylogenetic analyses of mtDNA sequences indicate deep genetic structure. Five major clades, which segregate according to geographic breaks, are identified (starting from the deepest one in the phylogeny): (1) Southern Chiapas and Northern Central America, (2) Tuxtlas massif, (3) Sierra Madre del Sur, (4) Eastern Oaxaca and Northern Chiapas, and (5) Sierra Madre Oriental. The long history of isolation undergone by each clade, as suggested by the phylogeny, implies that the species status of each of them should be revised.  相似文献   

2.
The Common Bush-Tanager (Chlorospingus ophthalmicus) is distributed in Neotropical cloud-forests from Mexico to Argentina and contains 25 subspecies divided into eight subspecies groups based on biogeography, eye coloration, presence of a postocular spot and chest band. All of Central America is occupied by a single subspecies group; whereas the Andes are believed to be occupied by seven additional subspecies groups. We used five mitochondrial genes to investigate the phylogeography and possible species limits of the ophthalmicus complex. A total of 14 monophyletic lineages were uncovered within the ophthalmicus complex, including three clades currently classified as separate species (C. semifuscus, inornatus and tacarcunae). Divergence estimates for these clades date between 0.8 and 5.2 million years ago (Ma). Contrary to expectations based on morphological diversity, phylogeographic structure was greatest in Mexico and Central America and weakest in the Andes. Morphological and genetic divergences were not significantly correlated and most morphologically defined subspecies groups were not supported. Our evidence suggests the ophthalmicus complex originated in Mexico ca. 6.0 Ma (million years ago) and spread south into the Andes ca. 4.7 Ma before the completion of the Isthmus of Panama. Three genetically divergent lineages of ophthalmicus that formed in the Andes possess a complex checkerboard distribution, with a single lineage represented by disjunct populations from Venezuela and the southern Andes, while intervening populations in Ecuador and Central Peru form two genetically and morphologically divergent lineages.  相似文献   

3.
? Premise of the study: Understanding patterns and processes associated with domestication has implications for crop development and agricultural biodiversity conservation. Semi-domesticated crops provide excellent opportunities to examine the interplay of natural and anthropogenic influences on plant evolution. The domestication process has not been thoroughly examined in many tropical perennial crop species. Chrysophyllum cainito (Sapotaceae), the star apple or caimito, is a semi-domesticated species widely cultivated for its edible fruits. It is known to be native to the neotropics, but the precise geographic origins of wild and cultivated forms are unresolved. ? Methods: We used nuclear ribosomal ITS sequences to infer phylogenetic relationships among C. cainito and close relatives (section Chrysophyllum). We employed phylogeographic approaches using ITS and plastid sequence data to determine geographic origins and center(s) of domestication of caimito. ? Key results: ITS data suggest a close relationship between C. cainito and C. argenteum. Plastid haplotype networks reveal several haplotypes unique to individual taxa but fail to resolve distinct lineages for either C. cainito or C. argenteum. Caimito populations from northern Mesoamerica and the Antilles exhibit a subset of the genetic diversity found in southern Mesoamerica. In Panama, cultivated caimito retains high levels of the diversity seen in wild populations. ? Conclusions: Chrysophyllum cainito is most closely related to a clade containing Central and South American C. argenteum, including subsp. panamense. We hypothesize that caimito is native to southern Mesoamerica and was domesticated from multiple wild populations in Panama. Subsequent migration into northern Mesoamerica and the Antilles was mediated by human cultivation.  相似文献   

4.
Urotocus rossittensis occurs in the bursa Fabricii of the scarlet-rumped tanager, Ramphocelus passerinii, and the common bush tanager, Chlorospingus ophthalmicus, from the Area de Conservación Guanacaste, Costa Rica. Morphological examination of type material of U. fusiformis and U. kenyensis and Costa Rican specimens suggests that U. fusiformis and U. kenyensis are indistinguishable from U. rossittensis. Confirmed accounts of Urotocus spp. refer to a single adult morphotype whose geographic distribution includes the Palearctic, Africa, Nearctic, and northern Neotropics.  相似文献   

5.
Bumble bees (Bombus Latreille) are an important group of social insects, well recognized throughout northern temperate regions as important pollinators of wild and agricultural plants. Little is known about the biology of this group in southern portions of the Americas, especially in Mesoamerica, a region of geological and ecological complexity from Mexico through Central America. One ubiquitous Mesoamerican species, Bombus ephippiatus, is enigmatic. Like many other Bombus, this species is homogeneous in body structure yet exhibits striking intraspecific color pattern polymorphism across its range, leading to uncertainty about its genealogical boundaries. It has been grouped taxonomically with B. wilmattae, a species narrowly restricted to southern Mexico and northern Guatamala. Furthermore, the relationships between these two taxa and a third species, B. impatiens, found only in America north of Mexico, have been controversial. Our phylogenetic analysis of DNA sequences from mitochondrial COI and nuclear PEPCK and CAD resolves the phylogeny of these three taxa as (B. impatiens, (B. ephippiatus, B. wilmattae)). Additional data from eight nuclear microsatellite markers reveal complex patterns of genetic divergence and isolation among populations of B. ephippiatus across its extensive geographic range, providing evidence for multiple independent evolutionary lineages. These lineages correspond not only to geographic and habitat variation across their range, but also to distinct color pattern groups present in the species. Knowledge of the phylogeny and genetic divergence of the B. ephippiatus group will provide a framework for understanding evolutionary and ecological origins of color pattern polymorphism in bumble bees, as well as providing insight into geographical factors enhancing speciation in Mesoamerica.  相似文献   

6.
The wild common bean (Phaseolus vulgaris) is widely but discontinuously distributed from northern Mexico to northern Argentina on both sides of the Isthmus of Panama. Little is known on how the species has reached its current disjunct distribution. In this research, chloroplast DNA polymorphisms in seven non-coding regions were used to study the history of migration of wild P. vulgaris between Mesoamerica and South America. A penalized likelihood analysis was applied to previously published Leguminosae ITS data to estimate divergence times between P. vulgaris and its sister taxa from Mesoamerica, and divergence times of populations within P. vulgaris. Fourteen chloroplast haplotypes were identified by PCR-RFLP and their geographical associations were studied by means of a Nested Clade Analysis and Mantel Tests. The results suggest that the haplotypes are not randomly distributed but occupy discrete parts of the geographic range of the species. The current distribution of haplotypes may be explained by isolation by distance and by at least two migration events between Mesoamerica and South America: one from Mesoamerica to South America and another one from northern South America to Mesoamerica. Age estimates place the divergence of P. vulgaris from its sister taxa from Mesoamerica at or before 1.3 Ma, and divergence of populations from Ecuador-northern Peru at or before 0.6 Ma. As these ages are taken as minimum divergence times, the influence of past events, such as the closure of the Isthmus of Panama and the final uplift of the Andes, on the migration history and population structure of this species cannot be disregarded.  相似文献   

7.
The stingless bee Melipona yucatanica is a rare species only found in preserved forests across Mesoamerica. Morphometric and molecular analyses (DNA barcoding of the cytochrome oxidase (cox1) and microsatellites) were combined to characterize and compare populations from Mexico and Guatemala. We aim to test the hypothesis predicting that populations from these two geographic regions could be considered as distinct taxonomic units. Morphometric analyses revealed geographic differences, Guatemalan bees being larger than Mexican specimens. Bayesian analyses of the mitochondrial cox1 region and the microsatellite loci demonstrated that M. yucatanica form two clades corresponding to the Mexican and Guatemalan populations. These results suggest that M. yucatanica from Mexico and Guatemala could represent two distinct species. However, more studies are needed on their ecology and behavior to determine the possibility of gene flow between them.  相似文献   

8.
A survey of the nasal mites from Guatemalan cloud forest birds is reported. Seventy-eight birds, representing 10 families and 18 species, were examined. Prevalance of infection was 24%. Two new species are described: Sternostoma darlingi from Mitrephanes phaeocercus (Tyrannidae) and S. pencei from Empidonax flavescens (Tyrannidae). New host records are reported for S. pirangae from Chlorospingus ophthalmicus (Thraupidae), S. hutsoni from Catharus dryas (Turdidae), Ptilonyssus sairae from Chlorospingus opthalmicus (Thraupidae) and Myioborus miniatus (Parulidae), P. euroturdi from Catharus dryas (Turdidae), P. tyrannus from Empidonax flavescens and Mitrephanes phaeocercus (both Tyrannidae), and Tinaminyssus ixoreus from Catharus dryas (Turdidae). The subspecies Ptilonyssus euroturdi mimicola Fain and Hyland is synonymized with the nominate subspecies. Data are presented to suggest that the Rhinonyssidae may be a polyphyletic assemblage.  相似文献   

9.
The genetic characterization of Native American groups provides insights into their history and demographic events. We sequenced the mitochondrial D-loop region (control region) of 520 samples from eight Mexican indigenous groups. In addition to an analysis of the genetic diversity, structure and genetic relationship between 28 Native American populations, we applied Bayesian skyline methodology for a deeper insight into the history of Mesoamerica. AMOVA tests applying cultural, linguistic and geographic criteria were performed. MDS plots showed a central cluster of Oaxaca and Maya populations, whereas those from the North and West were located on the periphery. Demographic reconstruction indicates higher values of the effective number of breeding females (Nef) in Central Mesoamerica during the Preclassic period, whereas this pattern moves toward the Classic period for groups in the North and West. Conversely, Nef minimum values are distributed either in the Lithic period (i.e. founder effects) or in recent periods (i.e. population declines). The Mesomerican regions showed differences in population fluctuation as indicated by the maximum Inter-Generational Rate (IGRmax): i) Center-South from the lithic period until the Preclassic; ii) West from the beginning of the Preclassic period until early Classic; iii) North characterized by a wide range of temporal variation from the Lithic to the Preclassic. Our findings are consistent with the genetic variations observed between central, South and Southeast Mesoamerica and the North-West region that are related to differences in genetic drift, structure, and temporal survival strategies (agriculture versus hunter-gathering, respectively). Interestingly, although the European contact had a major negative demographic impact, we detect a previous decline in Mesoamerica that had begun a few hundred years before.  相似文献   

10.
The genetic characterization of Native Mexicans is important to understand multiethnic based features influencing the medical genetics of present Mexican populations, as well as to the reconstruct the peopling of the Americas. We describe the Y-chromosome genetic diversity of 197 Native Mexicans from 11 populations and 1,044 individuals from 44 Native American populations after combining with publicly available data. We found extensive heterogeneity among Native Mexican populations and ample segregation of Q-M242* (46%) and Q-M3 (54%) haplogroups within Mexico. The northernmost sampled populations falling outside Mesoamerica (Pima and Tarahumara) showed a clear differentiation with respect to the other populations, which is in agreement with previous results from mtDNA lineages. However, our results point toward a complex genetic makeup of Native Mexicans whose maternal and paternal lineages reveal different narratives of their population history, with sex-biased continental contributions and different admixture proportions. At a continental scale, we found that Arctic populations and the northernmost groups from North America cluster together, but we did not find a clear differentiation within Mesoamerica and the rest of the continent, which coupled with the fact that the majority of individuals from Central and South American samples are restricted to the Q-M3 branch, supports the notion that most Native Americans from Mesoamerica southwards are descendants from a single wave of migration. This observation is compatible with the idea that present day Mexico might have constituted an area of transition in the diversification of paternal lineages during the colonization of the Americas.  相似文献   

11.
Restriction site variation in chloroplast DNA (cpDNA) was surveyed to analyze population dynamics in Liriodendron tulipifera L., a woody angiosperm found in eastern North America. Two cpDNA haplotypes, differing by the presence or absence of five restriction site changes (nucleotide sequence divergence estimated as approximately 0.15%) are geographically structured; 61 widespread populations possess the “northern” haplotype and three isolated populations of central Florida possess the “southern” haplotype. This geographic break in cpDNA distribution corresponds to patterns of geographic distribution revealed by a previous survey of allozyme variation, with the exception that analyses of allozyme data further divided the populations containing the northern cpDNA haplotype into two groups, a widespread upland group and a coastal intermediate group. Analyses of these two independent data sets together support the hypothesis that L. tulipifera survived the glacial advances of the Pleistocene in two distinct refugia, possibly as different taxa, and the intermediate coastal group was putatively formed from recent hybridizations between these entities.  相似文献   

12.
The broad geographic range of many Neotropical rain forest tree species implies excellent dispersal abilities or range establishment that preceded the formation of current dispersal barriers. In order to initiate historical analyses of such widespread Neotropical trees, we sequenced the nuclear ribosomal spacer (ITS) region of Symphonia globulifera L. f. (Clusiaceae) from populations spanning the Neotropics and western Africa. This rain forest tree has left unmistakable Miocene fossils in Mesoamerica (15.5-18.2 Ma) and in South America ( approximately 15 Ma). Although marine dispersal of S. globulifera is considered improbable, our study establishes three marine dispersal events leading to the colonization of Mesoamerica, the Amazon basin, and the West Indies, thus supporting the paleontological data. Our phylogeographic analysis revealed the spatial extent of the three Neotropical S. globulifera clades, which represent trans-Andes (Mesoamerica+west Ecuador), cis-Andes (Amazonia+Guiana), and the West Indies. Strong phylogeographic structure found among trans-Andean populations of S. globulifera stands in contrast to an absence of ITS nucleotide variation across the Amazon basin and indicates profound regional differences in the demographic history of this rain forest tree. Drawing from these results, we provide a historical biogeographic hypothesis to account for differences in the patterns of beta diversity within Mesoamerican and Amazonian forests.  相似文献   

13.
The huge biodiversity found in Mesoamerica is often explained by its geographic situation as a natural bridge between two large biogeographic regions. Often overlooked, however, are the high levels of speciation and diversification in the area. Here we assess the phylogenetic relationships within a Mesoamerican group of hummingbirds (Lampornis). We sequenced both mtDNA (1,143 bp of cyt b and 727 bp of ND5) and nuclear genes (505 bp of AK-5 intron and 567 bp of c-mos) for each of the seven recognised species and outgroups. We find two or three clades of similar age within this genus: L. clemenciae and L. amethystinus (singly or as each other's sister taxa) and a Central American clade. This Central-American clade presents a clear bipartition between northern (L. viridipallens and L. sybillae) and southern Mesoamerica, which is shared with many other Mesoamerican organisms. Our analyses suggest that L. hemileucus does not belong in the genus Lampornis. While we refrain to apply a time-scale to our data because of the lack of an appropriate calibration, our results indicate that the genus Lampornis predates the uprising of the Panama land-bridge, and that diversification among the isthmian species (L. castaneoventris and L. calolaema) is a very recent event. Our results strongly suggest a local Mesoamerican origin for this genus.  相似文献   

14.

Background  

Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica.  相似文献   

15.
Phenotypic variation is fundamental to evolutionary change. Variation not only evinces the connectivity of populations but it is also associated with the adaptability and evolvability of taxa. Despite the potential importance of morphological variation in structuring evolutionary patterns, little is known about how relative differences in intraspecific morphological variation and its geographic structure are linked to differences in species longevity. This study offers a novel combination of analyses that reveal the quantitative relationships among intraspecific variation, geographic range size and duration in the fossil record using late Cambrian trilobites. Results show that geographic range size and duration are positively correlated. Surprisingly, longer lived species tend to have less intraspecific variation. Phylogenetic effects were also explored and found not to determine the association between these variables. However, the distribution of geographic range sizes shows strong phylogenetic signal. In light of previous work, one possible explanation for these results is that species with shorter durations have comparatively higher rates of morphological evolution, reflected in higher phenotypic variation overall.  相似文献   

16.
Ten microsatellite loci were characterized for 34 locations from roundtail chub (Gila robusta complex) to better resolve patterns of genetic variation among local populations in the lower Colorado River basin. This group has had a complex taxonomic history and previous molecular analyses failed to identify species diagnostic molecular markers. Our results supported previous molecular studies based on allozymes and DNA sequences, which found that most genetic variance was explained by differences among local populations. Samples from most localities were so divergent species-level diagnostic markers were not found. Some geographic samples were discordant with current taxonomy due to admixture or misidentification; therefore, additional morphological studies are necessary. Differences in spatial genetic structure were consistent with differences in connectivity of stream habitats, with the typically mainstem species, G. robusta, exhibiting greater genetic connectedness within the Gila River drainage. No species exhibited strong isolation by distance over the entire stream network, but the two species typically found in headwaters, G. nigra and G. intermedia, exhibited greater than expected genetic similarity between geographically proximate populations, and usually clustered with individuals from the same geographic location and/or sub-basin. These results highlight the significance of microevolutionary processes and importance of maintaining local populations to maximize evolutionary potential for this complex. Augmentation stocking as a conservation management strategy should only occur under extreme circumstances, and potential source populations should be geographically proximate stocks of the same species, especially for the headwater forms.  相似文献   

17.
A compilation of studies using RAPD markers for evaluating population differentiation resulted in 78 estimates of AMOVA-derived ΦST and 31 estimates of Nei's GST, as well as in 41 estimates of Nei's within-population diversity. In outcrossing taxa, estimates of between-population diversity were closely correlated with maximum geographic distance between sampled populations. A corresponding association was not found in selfing taxa. These results suggest that RAPD can be a sensitive method for detection of genetic structuring according to the isolation-by-distance model. However, it also means that sampling strategies, as applied in individual studies, can seriously influence the resulting estimates of between-population diversity. Other sampling strategies, like number of plants per population and number of scored polymorphic markers, do not seem to impart any serious artefacts. As previously verified with allozyme data, RAPD markers showed that long-lived, outcrossing, late successional taxa retain most of their genetic variability within populations. By contrast, annual, selfing and/or early successional taxa allocate most of the genetic variability among populations. Estimates for between- and within-population diversity, respectively, proved to be negatively correlated, as previously reported for allozyme data. The only major discrepancy between allozymes and RAPD markers concerns geographic range; within-population diversity was strongly affected by distributional range of the investigated species in the allozyme data but not in the RAPD data. Moreover, RAPD-based values for between-population diversity increased with increasing distributional range whereas the opposite has been reported in a large allozyme data compilation. Contrary to allozymes, RAPD marker-derived within-population diversity is probably therefore not a very good predictor of total species genetic diversity.  相似文献   

18.
Phenotypic and molecular differences were previously found in populations of the endangered stingless bee Melipona beecheii from two extremes of its geographic range. In this study we combine the use of morphometric and molecular tools, with the aim of investigating patterns of phenotypic and molecular variation in populations across Mesoamerica. Morphometric analyses showed that bees from Mexico have significantly smaller body size compared with populations from Central America, forming two separated groups. Bayesian analysis of the ITS1 spacer of the ribosomal gene also showed the existence of two clusters: one composed by the Mexican populations, and another in which the Central American ones assembled (Guatemala, El Salvador, Nicaragua and Costa Rica). The combined results confirm the presence of two taxonomic units: one distributed in southern Mexico (ranging from the Yucatan peninsula to the north of Guatemala), and a Central American unit found from the southern part of Guatemala down to Costa Rica. These units should be considered separately under conservation programs and therefore, human assisted colony exchange between them should be avoided.  相似文献   

19.
Utricularia sect. Foliosa Kamiénski comprises three recognized species, U. amethystina Salzm. ex A.St.-Hil. & Girard, U. tricolor A.St.-Hil., and U. tridentata Sylvén, delimited based mainly on shape and structure of the corolla. In comparison with the two latter members of the section, U. amethystina forms a complex of morphological variants, reflected taxonomically by the previous recognition of 31 synonyms. In his monograph of the genus, Taylor synonymized these taxa based primarily on his observation of continuous morphological variation of the flowers. In the same treatment he also suggested a future taxonomic re-evaluation could re-establish two, three or more taxa. Here we examine this question utilizing morphometric analyses of floral variation across most of the synonyms mentioned above, within populations from across their Neotropical distribution. Based on both morphological and geographic characters we identify strongly differentiated morphotypes. Our data provide support for both the maintenance of taxa previously recognised as synonyms under U. amethystina, and the resurrection of taxa to species status, namely U. bicolor, U. damazioi, U. lindmanii and U. hirtella, and four other putative new taxa.  相似文献   

20.
The cloud forests of Mesoamerica are highly endangered habitats and the existence of narrowly distributed cryptic endemics will increase the number of taxa at potential risk of extinction. Here, we investigate genetic divergence between populations of the azure‐crowned hummingbird (Amazilia cyanocephala), a species complex of endemic hummingbirds to the montane forests of Mesoamerica, by analysing DNA sequences of four mitochondrial markers, morphological data and ecological niche modelling. Our results revealed the presence of two mtDNA lineages corresponding to subspecies A. c. cyanocephala distributed from Tamaulipas to Chiapas in Mexico and Amazilia c. guatemalensis distributed from southern Chiapas to Guatemala. The lineage split can be explained as a consequence of relative isolation of the populations in the different mountain ranges separated by the Motagua‐Polochic‐Jocotán fault system and corresponds to differences in morphology and to the lack of overlap in environmental space between subspecies. The divergence time estimates do not support the proposed model of a highly constrained temporal window at the end of the Pliocene as divergence at this barrier between cyanocephala and guatemalensis and splits of other bird taxa occurred during the Pleistocene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号