首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract This survey evaluates the specificity of band patterns in immunoblot of sera taken from clinically defined cases of Lyme arthritis and neuroborreliosis, towards three locally isolated strains of Borrelia burgdorferi , belonging to the three species: Borrelia sensu stricto, Borrelia garinii and Borrelia afzelii . To assess specificity, patient sera were statistically ( χ 2, P ≤ 0.05) compared with blood donors sera samples. Both IgG and IgM antibodies were considered. The overall reactivity of the three Borrelia strains in IgG immunoblots indicated that ten protein bands were significant, with a different prevalence of some of them in the two groups of patient sera: bands at 60-58, 30–33, 36–37 and 28-27 kDa were markers for neuroborreliosis sera; proteins at 100-83, 72-70 and 18-17 kDa behaved like markers for Lyme arthritis. The IgM Immunoblots revealed significant bands at 100-83, 72-70, 51, 24-21 and 18-17 kDa only with neuroborreliosis sera. Though there were variable band reactivities in each strain, a correlation emerged between the three genospecies and the clinical symptoms: in fact B. afzelii and B. garinii were prevalent in Lyme arthritis sera, (IgG Immunoblots); B. garinii was associated to neuroborreliosis (IgG and IgM Immunoblots); B. sensu stricto was strongly reactive with neuroborreliosis in IgM immunoblots. These data indicate that the three locally isolated strains of Borrelia representing the three genospecies should be used together in immunoblot to detect antibodies elicited in neuroborreliosis and Lyme arthritis.  相似文献   

2.
Ixodes ricinus ticks and mice can be infected with both Borrelia burgdorferi sensu stricto and Borrelia garinii. The effect of coinfection with these two Borrelia species on the development of murine Lyme borreliosis is unknown. Therefore, we investigated whether coinfection with the nonarthritogenic B. garinii strain PBi and the arthritogenic B. burgdorferi sensu stricto strain B31 alters murine Lyme borreliosis. Mice simultaneously infected with PBi and B31 showed significantly more paw swelling and arthritis, long-standing spirochetemia, and higher numbers of B31 spirochetes than did mice infected with B31 alone. However, the number of PBi spirochetes was significantly lower in coinfected mice than in mice infected with PBi alone. In conclusion, simultaneous infection with B. garinii and B. burgdorferi sensu stricto results in more severe Lyme borreliosis. Moreover, we suggest that competition of the two Borrelia species within the reservoir host could have led to preferential maintenance, and a rising prevalence, of B. burgdorferi sensu stricto in European I. ricinus populations.  相似文献   

3.
Evolution of the Borrelia burgdorferi outer surface protein OspC.   总被引:1,自引:0,他引:1       下载免费PDF全文
The genes coding for outer surface protein OspC from 22 Borrelia burgdorferi strains isolated from patients with Lyme borreliosis were cloned and sequenced. For reference purposes, the 16S rRNA genes from 17 of these strains were sequenced after being cloned. The deduced OspC amino acid sequences were aligned with 12 published OspC sequences and revealed the presence of 48 conserved amino acids. On the basis of the alignment, OspC could be divided into an amino-terminal relatively conserved region and a relatively variable region in the central portion. The distance tree obtained divided the ospC sequences into three groups. The first group contained ospC alleles from all (n = 13) sensu stricto strains, the second group contained ospC alleles from seven Borrelia afzelii strains, and the third group contained ospC alleles from five B. afzelii and all (n = 9) Borrelia garinii strains. The ratio of the mean number of synonymous (dS) and nonsynonymous (dN) nucleotide substitutions per site calculated for B. burgdorferi sensu stricto, B. garinii, and B. afzelii ospC alleles suggested that the polymorphism of OspC is due to positive selection favoring diversity at the amino acid level in the relatively variable region. On the basis of the comparison of 16S rRNA gene sequences, Borrelia hermsii is more closely related to B. afzelii than to B. burgdorferi sensu stricto and B. garinii. In contrast, the phylogenetic tree obtained for the B. hermsii variable major protein, Vmp33, and 18 OspC amino acid sequences suggested that Vmp33 and OspC from B. burgdorferi sensu stricto strains share a common evolutionary origin.  相似文献   

4.
In Europe, Borrelia burgdorferi sensu lato (sl) the agent of Lyme borreliosis circulates in endemic areas between Ixodes ricinus ticks and a large number of vertebrate hosts upon which ticks feed. Currently, at least 12 different Borrelia species belonging to the complex B. burgdorferi sl have been identified among which seven have been detected in I. ricinus: B. burgdorferi sensu stricto (ss), B. garinii, B. afzelii, B. valaisiana, B. spielmanii and B. bissettii. A few dozens of vertebrate hosts have been identified as reservoirs for these Borrelia species. Specific associations were rather early observed between hosts, ticks and borrelia species, like for example between rodents and B. afzelii and B. burgdorferi ss, and between birds and B. garinii and B. valaisiana. The complement present in the blood of the hosts is the active component in the Borrelia host specificity. Recent studies confirmed trends toward specific association between Borrelia species and particular host, but also suggested that loose associations may be more frequent in transmission cycles in nature than previously thought.  相似文献   

5.
Spirochete bacteria of the Borrelia burgdorferi sensu lato complex cause Lyme borreliosis. The three pathogenic subspecies Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto differ in their disease profiles and susceptibility to complement lysis. We investigated whether complement resistance of Borreliae could be due to acquisition of the main soluble inhibitors of the alternative complement pathway, factor H and the factor H-like protein 1. When exposed to nonimmune EDTA-plasma, the serum-resistant B. afzelii and B. burgdorferi sensu stricto strains bound factor H/factor H-like protein 1 to their surfaces. Assays with radiolabeled proteins showed that factor H bound strongly to the B. burgdorferi sensu stricto strain. To identify factor H ligands on the borrelial surface, we analyzed a panel of outer surface proteins of B. burgdorferi sensu stricto with the surface plasmon resonance technique. The outer surface lipoprotein OspE was identified as a specific ligand for factor H. Using recombinant constructs of factor H, the binding site for OspE was localized to the C-terminal short consensus repeat domains 15-20. Specific binding of factor H to B. burgdorferi sensu stricto OspE may help the pathogen to evade complement attack and phagocytosis.  相似文献   

6.
In this study we have developed a new Restriction-Fragment-Length-Polymorphism (RFLP) genotyping method for rapid detection and identification of Borrelia genospecies present as unique species or as co-infection in multiple specimens obtained simultaneously from 29 individual patients affected by early or late Lyme borreliosis (LB). The target of the RFLP-genotyping was the heterogeneous plasmid located ospA gene, thus we developed a method able to detect and differentiate between six clinically relevant Borrelia genospecies circulating in Europe, B. burgdorferi sensu stricto, B. garinii, B. afzelii, B. valaisiana, B. bissettii and B. spielmanii. In this study Borrelia DNA could be detected by PCR in at least one specimen of each patient, except in one case of neuroborreliosis (NB); blood samples gave the highest sensitivity in all patient groups. The genotyping indicated that B. afzelii was present in 8 patients with skin involvement, B. garinii in 2 cases of NB and 4 cases with skin involvement, B. burgdorferi sensu stricto was detected in one patient with skin involvement and another with Lyme arthritis. Different Borrelia species in distinct specimens were identified in one patient with EM. The RFLP analysis of 11 patients revealed mixed patterns, which suggested pluri-infection with different Borrelia species.  相似文献   

7.
Lyme disease (LD) is the most common tick-borne disease in the Northern hemisphere. It is caused by Borrelia burgdorferi sensu lato, in particular, B. burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii. However, other genospecies have been implicated as causative factors of LD as well. Borrelia burgdorferi exhibits numerous immunogenic lipoproteins, but due to strong heterogeneity, the use of these proteins for serodiagnosis and vaccination is hampered. We and others have identified acylated cholesteryl galactosides (ACGal) as a novel glycolipid present in B. burgdorferi sensu stricto, B. afzelii, and B. garinii. ACGal is a strong antigen and the majority of patients display anti-ACGal antibodies in the chronic stages of LD. However, it is unknown whether ACGal is present in other presumably pathogenic B. burgdorferi genospecies. Therefore, we performed an analysis of the total lipid extracts of a wide spectrum of genospecies of B. burgdorferi sensu lato using thin-layer chromatography as well as Western blot and dot-blot assays. We show that ACGal is present in substantial quantities in all B. burgdorferi genospecies tested. Therefore, this molecule might improve the serological detection of rarely pathogenic genospecies, and may be used as a protective vaccine regardless of the prevailing genospecies.  相似文献   

8.
Borrelia burgdorferi sensu lato organisms, comprising B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, are tick-borne pathogens causing Lyme borreliosis in humans. To identify putative virulence determinants, a B. afzelii DNA library was screened for Congo red dye binding, a property associated with virulence in pathogenic bacteria. One clone was found to carry a 663-nucleotide-long open reading frame encoding a Congo red dye-binding protein with a calculated molecular mass of 25,660 Da. The amino acid sequence deduced from its nucleotide sequence was found to include a consensus bacterial lipidation site present at residues 15 to 18 (Leu-Ser-Gly-Cys). The lipoprotein nature was demonstrated by incorporation of radioactive palmitate; hence, this protein has been termed NlpH, for new lipoprotein H. NlpH is located on the surface of B. afzelii, and the nlpH gene is found on a circular plasmid. The nlpH gene is also found in B. burgdorferi sensu stricto and B. garinii. Immediately upstream of nlpH is located a smaller reading frame encoding a polypeptide containing the casein kinase II phosphorylation recognition sequence, (Ser/Thr)-X-Y-(Glu/Asp), repeated 10 times.  相似文献   

9.
Thirty strains of Borrelia burgdorferi sensu lato have been isolated from Ixodes persulcatus ticks and from skin lesions of Lyme disease patients in the Russian Far East from 1997 to 2003. We amplified full-length outer surface protein A (ospA) gene of all strains. BLAST search and following phylogenetic analysis showed that strains form four well-defined groups. Four strains belong to Borrelia afzelii species. Other strains distributed into tree major groups, identified as Borrelia garinii. Indeed, based on the ospA gene comparison, phylogenetic relationship of these groups among each other does not differ from relationship among other previously defined groups inside B. burgdorferi sensu lato genogroup, such as B. afzelii or Borrelia bissettii. Further investigations of genetic and serologic properties of the strains belonging to those groups are required in order to clarify their taxonomic status.  相似文献   

10.
18 Borrelia isolates obtained from adult ticks of the Ixodes ricinus species, collected from different plants in April 2000 in the Khostinsk region of the Krasnodar Territory in the vicinity of the health resort of Matsesta not far from Sochi, were identified by means of PCR and the analysis of polymorphism of the restriction fragments of ribosomal rrf-rrl spacer amplicon. Among them, in addition to Borrelia species, found in Russia earlier (B. garinii, B. afzelii, B. valaisiana and B. lusitaniae), the classical causative agent of Lyme borreliosis (B. burgdorferi sensu stricto) was detected for the first time. The isolated strain (lr-4721) is now kept in the collection of the Borreliosis Center of the Ministry of Health of Russia (the Laboratory of Infections Vectors at the Gamaleya Research Institute of Epidemiology and Microbiology). The probable role of this infective agent in infectious pathology in Russia is discussed.  相似文献   

11.
The role of small mammals as reservoir hosts for Borrelia burgdorferi was investigated in several areas where Lyme disease is endemic in northern Spain. A low rate of infestation by Ixodes ricinus nymphs was found in the small mammal populations studied that correlated with the near-absence of B. burgdorferi sensu lato in 184 animals tested and with the lack of transmission of B. burgdorferi sensu lato to I. ricinus larvae that fed on them. In contrast, questing ticks collected at the same time and in the same areas were found to carry a highly variable B. burgdorferi sensu lato repertoire (B. burgdorferi sensu stricto, Borrelia garinii, Borrelia valaisiana, and Borrelia afzelii). Interestingly, the only isolate obtained from small mammals (R57, isolated from a bank vole) grouped by phylogenetic analyses with other Borrelia species but in a separate clade from the Lyme disease and relapsing fever organisms, suggesting that it is a new species. This new agent was widely distributed among small mammals, with infection rates of 8.5 to 12% by PCR. Moreover, a high seroprevalence to B. burgdorferi sensu lato was found in the animal sera, suggesting cross-reactivity between B. burgdorferi sensu lato and R57. Although small mammals do not seem to play an important role as reservoirs for B. burgdorferi sensu lato in the study area, they seem to be implicated in the maintenance of spirochetes similar to R57.  相似文献   

12.
使用环介导恒温扩增技术,基于莱姆病病原伯氏疏螺旋体的外膜蛋白A(OspA)基因,针对伯氏疏螺旋体不同的基因型设计特异性引物,对国内主要的莱姆病病原伯氏疏螺旋体的3个基因型进行分型鉴定。研究结果表明,设计的引物具有良好的特异性,可以对狭义伯氏疏螺旋体(Borrelia burgdorferi sensu strict)、嘎氏疏螺旋体(B.afzelii)和伽氏疏螺旋体(B.garinii)进行分型鉴定。伯氏疏螺旋体的分型鉴定可以对不同临床症状莱姆病患者的治疗和莱姆病的控制提供一定的依据。  相似文献   

13.
Borrelia garinii is one of the three major Borreliae responsible for Lyme borreliosis in Europe. We have characterized a protein of B. garinii (VS102) and a genomic fragment from the gene encoding this protein was cloned. The DNA sequence of the fragment showed high homology with a known gene of B. burgdorferi sensu stricto. The protein encoded by this gene in B. burgdorferi sensu stricto is a phosphocarrier protein (histidine-containing protein). A mutation T to G polymorphism at codon 57 was found to be specific to B. garinii. A PCR-based approach that allows the rapid detection of this mutation made it possible to specifically discriminate B. garinii from other B. burgdorferi genospecies with high sensitivity and specificity.  相似文献   

14.
Lyme disease is a tick-borne multisystem disease that affects primarily the skin, nervous system, heart and joints. At least three species of Borrelia burgdorferi sensu lato, namely Borrelia burgdorferi sensu stricto, Borrelia garinii, and Borrelia afzelii, can cause the disease. This review will focus mainly on the pathophysiology of Lyme arthritis, the long-term outcome of Lyme disease, and the recently licensed vaccine against Lyme disease.  相似文献   

15.
AIMS: 16S rDNA sequences of Borrelia burgdorferi sensu lato were aligned with the 16S rDNA sequences of Borrelia hermsii, Borrelia turicatae, and Borrelia lonestari in order to identify primers that might be used to more specifically identify agents of human Lyme disease in ticks in human skin samples. METHODS AND RESULTS: Standard polymerase chain reaction (PCR), using an oligonucleotide sequence, designated TEC1, was shown, in combination with a previously developed primer (LD2) to amplify strains of B. burgdorferi sensu stricto, Borrelia afzelii, and Borrelia garinii, but not the non-Lyme causing B. hermsii or B. turicatae. This primer pair, designated Bbsl, was successfully used to amplify B. burgdorferi sensu lato from skin biopsies of patients with Lyme disease symptoms as well as from Ixodes scapularis, Amblyomma americanum and Dermacentor variabilis ticks. CONCLUSIONS: The primer set Bbsl allows for the rapid detection and differentiation of B. burgdorferi sensu lato from non-Lyme disease-causing Borrelia species in ticks and human tissues. SIGNIFICANCE AND IMPACT OF THE STUDY: The PCR primer set, Bbsl, will greatly facilitate detection of the causative agents of Lyme disease in infected ticks and human skin samples assisting in epidemiological studies, and potentially allowing for a more rapid diagnosis of the disease in patients.  相似文献   

16.
The genetic diversity of Borrelia burgdorferi sensu lato was assessed in individual adult Ixodes ricinus ticks from Europe by direct PCR amplification of spirochetal DNA followed by genospecies-specific hybridization. Analysis of mixed infections in the ticks showed that B. garinii and B. valaisiana segregate from B. afzelii. This and previous findings suggest that host complement interacts with spirochetes in the tick, thereby playing an important role in the ecology of Lyme borreliosis.  相似文献   

17.
We studied 48 Borrelia isolates that were associated with Lyme borreliosis or were isolated from ticks and identified three DNA relatedness groups by using the S1 nuclease method. The three DNA groups (genospecies) were associated with specific rRNA gene restriction patterns, protein electrophoresis patterns, and patterns of reactivity with murine monoclonal antibodies. Genospecies I corresponded to Borrelia burgdorferi sensu stricto since it contained the type strain of this species (strain ATCC 35210); this genospecies included 28 isolates from Europe and the United States. Genospecies II was named Borrelia garinii sp. nov. and included 13 isolates from Europe and Japan. Genospecies III (group VS461) included seven isolates from Europe and Japan.  相似文献   

18.
To investigate the prevalence of Lyme disease-related Borrelia species, wild rodents were captured around Yushan National Park and Alishan Forest Recreation Area Park in Taiwan 2,000 to 3,000 meters above sea level. Borrelia was not isolated from 67 small mammals of 7 species. Sera from rodents showed no positive reactivity against whole cell antigens of B. garinii, B. afzelii or B. valaisiana by ELISA. These results suggested that Lyme disease is not endemic to the Alishan area.  相似文献   

19.
In order to evaluate the presence of specific IgG antibodies to Borrelia burgdorferi in patients with clinical manifestations associated with Lyme borreliosis in Cali, Colombia, 20 serum samples from patients with dermatologic signs, one cerebrospinal fluid (CSF) sample from a patient with chronic neurologic and arthritic manifestations, and twelve serum samples from individuals without clinical signs associated with Lyme borreliosis were analyzed by IgG Western blot. The results were interpreted following the recommendations of the Centers for Diseases Control and Prevention (CDC) for IgG Western blots. Four samples fulfilled the CDC criteria: two serum specimens from patients with morphea (localized scleroderma), the CSF from the patient with neurologic and arthritic manifestations, and one of the controls. Interpretation of positive serology for Lyme disease in non-endemic countries must be cautious. However these results suggest that the putative "Lyme-like" disease may correlate with positivity on Western blots, thus raising the possibility that a spirochete genospecies distinct from B. burgdorferi sensu stricto, or a Borrelia species other than B. burgdorferi sensu lato is the causative agent. Future work will focus on a survey of the local tick and rodent population for evidence of spirochete species that could be incriminated as the etiologic agent.  相似文献   

20.
Human Lyme disease is commonly caused by several species of spirochetes in the Borrelia genus. In Eurasia these species are largely Borrelia afzelii, B. garinii, B. burgdorferi, and B. bavariensis sp. nov. Whole-genome sequencing is an excellent tool for investigating and understanding the influence of bacterial diversity on the pathogenesis and etiology of Lyme disease. We report here the whole-genome sequences of four isolates from two of the Borrelia species that cause human Lyme disease, B. afzelii isolates ACA-1 and PKo and B. garinii isolates PBr and Far04.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号