首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calmodulin regulates the function of numerous proteins by binding to short regions on the target molecule. IQ motifs, which are found in over 100 human proteins, appear in tandem repeats and bind calmodulin in the absence of Ca(2+). One of these IQ-containing proteins, IQGAP1, interacts with several targets, including Cdc42, beta-catenin, E-cadherin, and actin, in a calmodulin-regulated manner. To elucidate the molecular mechanism by which apocalmodulin and Ca(2+)/calmodulin differentially regulate IQGAP1, a series of constructs of IQGAP1 with selected point mutations of the four tandem IQ motifs were generated. Mutating the basic charged arginine residues in all four IQ motifs abrogated binding of IQGAP1 to apocalmodulin, but had no effect on its interaction with Ca(2+)/calmodulin. Analysis of IQGAP1 constructs with point mutations in single, double, or triple IQ motifs revealed that apocalmodulin bound only to IQ3 and IQ4. By contrast to the arginine mutant constructs, mutation of selected hydrophobic residues in the IQ motifs produced an IQGAP1 protein incapable of binding either apocalmodulin or Ca(2+)/calmodulin. These results, which differ from the conventional model of Ca(2+)-independent binding of calmodulin to IQ motifs, provide insight into the complexity of the molecular interactions between calmodulin and IQ motifs.  相似文献   

2.
IQGAP1 regulates cytoskeletal dynamics through interactions with the Rho family GTPases Rac1 and Cdc42, F-actin, and beta-catenin. Calmodulin interaction with IQ motifs of IQGAP1 negatively influences these IQGAP1 interactions. Although, calmodulin interacts with IQGAP1 in the absence of Ca(2+) and was suggested to exhibit reduced binding when Ca(2+) bound, recent reports show substantially greater binding when Ca(2+) is present. Binding evaluations have primarily relied on IQGAP1 interaction with calmodulin conjugated to Sepharose 4B. In this study we evaluated the Ca(2+)-dependence of calmodulin interaction with native IQGAP1 using a series of independent biochemical approaches. We found the apparent binding of calmodulin to IQGAP1 was Ca(2+)-independent, being between 5- and 20-fold greater in the absence than in the presence of Ca(2+). In addition, calmodulin interaction with IQGAP1 was negatively regulated by buffer [Ca(2+)] (IC(50)=3.4x10(-7)M). Regulation was specific to Ca(2+), as Ba(2+) was approximately 400-fold less effective than Ca(2+) at modulating the interaction. Moreover, testing of calmodulin mutants demonstrated that apocalmodulin tightly binds IQGAP1 and that the N- and C-terminal pair of EF hands are important for Ca(2+) sensitivity. These data indicate that calmodulin may disassemble from IQGAP1 to facilitate IQGAP1 interaction with effectors of cytoskeletal reorganization during conditions of cell activation that promote increased cytosolic [Ca(2+)].  相似文献   

3.
IQGAP1 is a homodimeric protein that reversibly associates with F-actin, calmodulin, activated Cdc42 and Rac1, CLIP-170, beta-catenin, and E-cadherin. Its F-actin binding site includes a calponin homology domain (CHD) located near the N-terminal of each subunit. Prior studies have implied that medium- to high-affinity F-actin binding (5-50 microM K(d)) requires multiple CHDs located either on an individual polypeptide or on distinct subunits of a multimeric protein. For IQGAP1, a series of six tandem IQGAP coiled-coil repeats (IRs) located past the C-terminal of the CHD of each subunit support protein dimerization and, by extension, the IRs or an undefined subset of them were thought to be essential for F-actin binding mediated by its CHDs. Here we describe efforts to determine the minimal region of IQGAP1 capable of binding F-actin. Several truncation mutants of IQGAP1, which contain progressive deletions of the IRs and CHD, were assayed for F-actin binding in vitro. Fragments that contain both the CHD and at least one IR could bind F-actin and, as expected, removal of all six IRs and the CHD abolished binding. Unexpectedly, a fragment called IQGAP1(2-210), which contains the CHD, but lacks IRs, could bind actin filaments. IQGAP1(2-210) was found to be monomeric, to bind F-actin with a K(d) of approximately 47 microM, to saturate F-actin at a molar ratio of one IQGAP1(2-210) per actin monomer, and to co-localize with cortical actin filaments when expressed by transfection in cultured cells. These collective results identify the first known example of high-affinity actin filament binding mediated by a single CHD.  相似文献   

4.
MYR-1, a mammalian class I myosin, consisting of a heavy chain and 4-6 associated calmodulins, is represented by the 130-kDa myosin I (or MI(130)) from rat liver. MI(130) translocates actin filaments in vitro in a Ca(2+)-regulated manner. A decrease in motility observed at higher Ca(2+) concentrations has been attributed to calmodulin dissociation. To investigate mammalian myosin I regulation, we have coexpressed in baculovirus calmodulin and an epitope-tagged 85-kDa fragment representing the amino-terminal catalytic "motor" domain and the first calmodulin-binding IQ domain of rat myr-1; we refer to this truncated molecule here as MI(1IQ). Association of calmodulin to MI(1IQ) is Ca(2+)-insensitive. MI(1IQ) translocates actin filaments in vitro at a rate resembling MI(130), but unlike MI(130), does not exhibit sensitivity to 0.1-100 micrometer Ca(2+). In addition to demonstrating successful expression of a functional truncated mammalian myosin I in vitro, these results indicate that: 1) Ca(2+)-induced calmodulin dissociation from MI(130) in the presence of actin is not from the first IQ domain, 2) velocity is not affected by the length of the IQ region, and 3) the Ca(2+) sensitivity of actin translocation exhibited by MI(130) involves 1 or more of the other 5 IQ domains and/or the carboxyl tail.  相似文献   

5.
Schroeter M  Chalovich JM 《Biochemistry》2004,43(43):13875-13882
Fesselin is a proline-rich actin-binding protein that was isolated from avian smooth muscle. Fesselin bundles actin and accelerates actin polymerization by facilitating nucleation. We now show that this polymerization of actin can be regulated by Ca(2+)-calmodulin. Fesselin was shown to bind to immobilized calmodulin in the presence of Ca(2+). The fesselin-calmodulin interaction was confirmed by a Ca(2+)-dependent increase in 2-(4-maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) fluorescence upon addition of fesselin to MIANS-labeled wheat germ calmodulin. The affinity was estimated to be approximately 10(9) M(-1). The affinity of Ca(2+)-calmodulin to the fesselin F-actin complex was approximately 10(8) M(-1). Calmodulin binding to fesselin appeared to be functionally significant. In the presence of fesselin and calmodulin, the polymerization of actin was Ca(2+)-dependent. Ca(2+)-free calmodulin either had no effect or enhanced the ability of fesselin to accelerate actin polymerization. Ca(2+)-calmodulin not only reversed the stimulatory effect of fesselin but reduced the rate of polymerization below that observed in the absence of fesselin. While Ca(2+)-calmodulin had a large effect on the interaction of fesselin with G-actin, the effect on F-actin was small. Neither the binding of fesselin to F-actin nor the subsequent bundling of F-actin was greatly affected by Ca(2+)-calmodulin. Fesselin may function as an actin-polymerizing factor that is regulated by Ca(2+) levels.  相似文献   

6.
During infection, enteropathogenic Escherichia coli (EPEC) injects effector proteins into the host cell to manipulate the actin cytoskeleton and promote formation of actin pedestals. IQGAP1 is a multidomain protein that participates in numerous cellular functions, including Rac1/Cdc42 and Ca(2+)/calmodulin signaling and actin polymerization. Here we report that IQGAP1, Ca(2+), and calmodulin modulate actin pedestal formation by EPEC. Infection with EPEC promotes both the interaction of IQGAP1 with calmodulin and the localization of IQGAP1 and calmodulin to actin pedestals while reducing the interaction of IQGAP1 with Rac1 and Cdc42. IQGAP1-null fibroblasts display a reduced polymerization of actin in response to EPEC. In addition, antagonism of calmodulin or chelation of intracellular Ca(2+) reduces EPEC-dependent actin polymerization. Furthermore, IQGAP1 specifically interacts with Tir in vitro and in cells. Together these data identify IQGAP1, Ca(2+), and calmodulin as a novel signaling complex regulating actin pedestal formation by EPEC.  相似文献   

7.
Activated forms of the GTPases, Rac and Cdc42, are known to stimulate formation of microfilament-rich lamellipodia and filopodia, respectively, but the underlying mechanisms have remained obscure. We now report the purification and characterization of a protein, IQGAP1, which is likely to mediate effects of these GTPases on microfilaments. Native IQGAP1 purified from bovine adrenal comprises two ~190-kD subunits per molecule plus substoichiometric calmodulin. Purified IQGAP1 bound directly to F-actin and cross-linked the actin filaments into irregular, interconnected bundles that exhibited gel-like properties. Exogenous calmodulin partially inhibited binding of IQGAP1 to F-actin, and was more effective in the absence, than in the presence of calcium. Immunofluorescence microscopy demonstrated cytochalasin D–sensitive colocalization of IQGAP1 with cortical microfilaments. These results, in conjunction with prior evidence that IQGAP1 binds directly to activated Rac and Cdc42, suggest that IQGAP1 serves as a direct molecular link between these GTPases and the actin cytoskeleton, and that the actin-binding activity of IQGAP1 is regulated by calmodulin.  相似文献   

8.
Ca(2+) and calmodulin modulate numerous cellular functions, ranging from muscle contraction to the cell cycle. Accumulating evidence indicates that Ca(2+) and calmodulin regulate the MAPK signaling pathway at multiple positions in the cascade, but the molecular mechanism underlying these observations is poorly defined. We previously documented that IQGAP1 is a scaffold in the MAPK cascade. IQGAP1 binds to and regulates the activities of ERK, MEK, and B-Raf. Here we demonstrate that IQGAP1 integrates Ca(2+) and calmodulin with B-Raf signaling. In vitro analysis reveals that Ca(2+) promotes the direct binding of IQGAP1 to B-Raf. This interaction is inhibited by calmodulin in a Ca(2+)-regulated manner. Epidermal growth factor (EGF) is unable to stimulate B-Raf activity in fibroblasts treated with the Ca(2+) ionophore A23187. In contrast, chelation of intracellular free Ca(2+) concentrations ([Ca(2+)](i)) significantly enhances EGF-stimulated B-Raf activity, an effect that is dependent on IQGAP1. Incubation of cells with EGF augments the association of B-Raf with IQGAP1. Moreover, Ca(2+) regulates the association of B-Raf with IQGAP1 in cells. Increasing [Ca(2+)](i) with Ca(2+) ionophores significantly reduces co-immunoprecipitation of B-Raf and IQGAP1, whereas chelation of Ca(2+) enhances the interaction. Consistent with these findings, increasing and decreasing [Ca(2+)](i) increase and decrease, respectively, co-immunoprecipitation of calmodulin with IQGAP1. Collectively, our data identify a previously unrecognized mechanism in which the scaffold protein IQGAP1 couples Ca(2+) and calmodulin signaling to B-Raf function.  相似文献   

9.
10.
IQGAP1 is a large modular protein that displays multiple partnership and is thought to act as a scaffold in coupling cell signaling to the actin and microtubule cytoskeletons in cell migration, adhesion, and cytokinesis. However the molecular mechanisms underlying the activities of IQGAP1 are poorly understood in part because of its large size, poor solubility and lack of functional assays to challenge biochemical properties in various contexts. We have purified bacterially expressed recombinant human IQGAP1. The protein binds Cdc42, Rac1, and the CRIB domain of N-WASP in a calmodulin-sensitive fashion. We further show that in addition to bundling of filaments via a single N-terminal calponin-homology domain, IQGAP1 actually regulates actin assembly. It caps barbed ends, with a higher affinity for ADP-bound terminal subunits (K(B) = 4 nM). The barbed end capping activity is inhibited by calmodulin, consistent with calmodulin binding to IQGAP1 with a K(C) of 40 nm, both in the absence and presence of Ca(2+) ions. The barbed end capping activity resides in the C-terminal half of IQGAP1. It is possible that the capping activity of IQGAP1 accounts for its stimulation of cell migration. We further find that bacterially expressed recombinant IQGAP1 fragments easily co-purify with nucleic acids that turn out to activate N-WASP protein to branch filaments with Arp2/3 complex. The present results open perspectives for tackling the function of IQGAP1 in more complex reconstituted systems.  相似文献   

11.
Roles of three domains of Tetrahymena eEF1A in bundling F-actin   总被引:1,自引:0,他引:1  
The conventional role of eukaryotic elongation factor 1A (eEF1A) is to transport aminoacyl tRNA to the A site of ribosomes during the peptide elongation phase of protein synthesis. eEF1A also is involved in regulating the dynamics of microtubules and actin filaments in cytoplasm. In Tetrahymena, eEF1A forms homodimers and bundles F-actin. Ca(2+)/calmodulin (CaM) causes reversion of the eEF1A dimer to the monomer, which loosens F-actin bundling, and then Ca(2+)/CaM/eEF1A monomer complexes dissociate from F-actin. eEF1A consists of three domains in all eukaryotic species, but the individual roles of the Tetrahymena eEF1A domains in bundling F-actin are unknown. In this study, we investigated the interaction of each domain with F-actin, recombinant Tetrahymena CaM, and eEF1A itself in vitro, using three glutathione-S-transferase-domain fusion proteins (GST-dm1, -2, and -3). We found that only GST-dm3 bound to F-actin and influences dimer formation, but that all three domains bound to Tetrahymena CaM in a Ca(2+)-dependent manner. The critical Ca(2+) concentration for binding among three domains of eEF1A and CaM were < or =100 nM for domain 1, 100 nM to 1 microM for domain 3, and >1 microM for domain 2, whereas stimulation of and subsequent Ca(2+) influx through Ca(2+) channels raise the cellular Ca(2+) concentration from the basal level of approximately 100 nM to approximately 10 microM, suggesting that domain 3 has a pivotal role in Ca(2+)/CaM regulation of eEF1A.  相似文献   

12.
IQGAP1 contains a number of protein recognition motifs through which it binds to targets. Several in vitro studies have documented that IQGAP1 interacts directly with calmodulin, actin, E-cadherin, beta-catenin, and the small GTPases Cdc42 and Rac. Nevertheless, direct demonstration of in vivo function of mammalian IQGAP1 is limited. Using a novel assay to evaluate in vivo function of IQGAP1, we document here that microinjection of IQGAP1 into early Xenopus embryos generates superficial ectoderm lesions at late blastula stages. This activity was retained by the mutated variants of IQGAP1 in which the calponin homology domain or the WW domain was deleted. By contrast, deletion of the IQ (IQGAP1-DeltaIQ), Ras-GAP-related (IQGAP1-DeltaGRD), or C-terminal (IQGAP1-DeltaC) domains abrogated the effect of IQGAP1 on the embryos. None of the latter mutants bound Cdc42, suggesting that the binding of Cdc42 by IQGAP1 is critical for its function. Moreover, overexpression of IQGAP1, but not IQGAP1-DeltaGRD, significantly increased the amount of active Cdc42 in embryonic cells. Co-injection of wild type IQGAP1 with dominant negative Cdc42, but not the dominant negative forms of Rac or Rho, blocked the effect of IQGAP1 on embryonic ectoderm. Together these data indicate that the activity of IQGAP1 in embryonic ectoderm requires Cdc42 function.  相似文献   

13.
We previously described IQGAP1 as a human protein related to a putative Ras GTPase-activating protein (RasGAP) from the fission yeast Schizosaccharomyces pombe. Here we report the identification of a liver-specific human protein that is 62% identical to IQGAP1. Like IQGAP1, the novel IQGAP2 protein harbors an N-terminal calponin homology motif which functions as an F-actin binding domain in members of the spectrin, filamin, and fimbrin families. Both IQGAPs also harbor several copies of a novel 50- to 55-amino-acid repeat, a single WW domain, and four IQ motifs and have 25% sequence identity with almost the entire S. pombe sar1 RasGAP homolog. As predicted by the presence of IQ motifs, IQGAP2 binds calmodulin. However, neither full-length nor truncated IQGAP2 stimulated the GTPase activity of Ras or its close relatives. Instead, IQGAP2 binds Cdc42 and Racl but not RhoA. This interaction involves the C-terminal half of IQGAP2 and appears to be independent of the nucleotide binding status of the GTPases. Although IQGAP2 shows no GAP activity towards Cdc42 and Rac1, the protein did inhibit both the intrinsic and RhoGAP-stimulated GTP hydrolysis rates of Cdc42 and Rac1, suggesting an alternative mechanism via which IQGAPs might modulate signaling by these GTPases. Since IQGAPs harbor a potential actin binding domain, they could play roles in the Cdc42 and Rac1 controlled generation of specific actin structures.  相似文献   

14.
Calmodulin, bound to the alpha(1) subunit of the cardiac L-type calcium channel, is required for calcium-dependent inactivation of this channel. Several laboratories have suggested that the site of interaction of calmodulin with the channel is an IQ-like motif in the carboxyl-terminal region of the alpha(1) subunit. Mutations in this IQ motif are linked to L-type Ca(2+) current (I(Ca)) facilitation and inactivation. IQ peptides from L, P/Q, N, and R channels all bind Ca(2+)calmodulin but not Ca(2+)-free calmodulin. Another peptide representing a carboxyl-terminal sequence found only in L-type channels (designated the CB domain) binds Ca(2+)calmodulin and enhances Ca(2+)-dependent I(Ca) facilitation in cardiac myocytes, suggesting the CB domain is functionally important. Calmodulin blocks the binding of an antibody specific for the CB sequence to the skeletal muscle L-type Ca(2+) channel, suggesting that this is a calmodulin binding site on the intact protein. The binding of the IQ and CB peptides to calmodulin appears to be competitive, signifying that the two sequences represent either independent or alternative binding sites for calmodulin rather than both sequences contributing to a single binding site.  相似文献   

15.
Fusion of phagosomes with late endocytic organelles is essential for cellular digestion of microbial pathogens, senescent cells, apoptotic bodies, and retinal outer segment fragments. To further elucidate the biochemistry of the targeting process, we developed a scintillation proximity assay to study the stepwise association of lysosomes and phagosomes in vitro. Incubation of tritium-labeled lysosomes with phagosomes containing scintillant latex beads led to light emission in a reaction requiring cytosol, ATP, and low Ca(2+) concentrations. The nascent complex was sensitive to disruption by alkaline carbonate, indicating that the organelles had "docked" but not fused. Through inhibitor studies and fluorescence microscopy we show that docking is preceded by a tethering step that requires actin polymerization and calmodulin. In the docked state ongoing actin polymerization and calmodulin are no longer necessary. The tethering/docking activity was purified to near homogeneity from rat liver cytosol. Major proteins in the active fractions included actin, calmodulin and IQGAP2. IQGAPs are known to bind calmodulin and cross-link F-actin, suggesting a key coordinating role during lysosome/phagosome attachment. The current results support the conclusion that lysosome/phagosome interactions proceed through distinct stages and provide a useful new approach for further experimental dissection.  相似文献   

16.
IQGAP1 and calmodulin modulate E-cadherin function   总被引:4,自引:0,他引:4  
Ca(2+)-dependent cell-cell adhesion is mediated by the cadherin family of transmembrane proteins. Adhesion is achieved by homophilic interaction of the extracellular domains of cadherins on adjacent cells, with the cytoplasmic regions serving to couple the complex to the cytoskeleton. IQGAP1, a novel RasGAP-related protein that interacts with the cytoskeleton, binds to actin, members of the Rho family, and E-cadherin. Calmodulin binds to IQGAP1 and regulates its association with Cdc42 and actin. Here we demonstrate competition between calmodulin and E-cadherin for binding to IQGAP1 both in vitro and in a normal cellular milieu. Immunocytochemical analysis in MCF-7 (E-cadherin positive) and MDA-MB-231 (E-cadherin negative) epithelial cells revealed that E-cadherin is required for accumulation of IQGAP1 at cell-cell junctions. The cell-permeable calmodulin antagonist CGS9343B significantly increased IQGAP1 at areas of MCF-7 cell-cell contact, with a concomitant decrease in the amount of E-cadherin at cell-cell junctions. Analysis of E-cadherin function revealed that CGS9343B significantly decreased homophilic E-cadherin adhesion. On the basis of these data, we propose that disruption of the binding of calmodulin to IQGAP1 enhances the association of IQGAP1 with components of the cadherin-catenin complex at cell-cell junctions, resulting in impaired E-cadherin function.  相似文献   

17.
Myosin 5a is as yet the best-characterized unconventional myosin motor involved in transport of organelles along actin filaments. It is well-established that myosin 5a is regulated by its tail in a Ca(2+)-dependent manner. The fact that the actin-activated ATPase activity of myosin 5a is stimulated by micromolar concentrations of Ca(2+) and that calmodulin (CaM) binds to IQ motifs of the myosin 5a heavy chain indicates that Ca(2+) regulates myosin 5a function via bound CaM. However, it is not known which IQ motif and bound CaM are responsible for the Ca(2+)-dependent regulation and how the head-tail interaction is affected by Ca(2+). Here, we found that the CaM in the first IQ motif (IQ1) is responsible for Ca(2+) regulation of myosin 5a. In addition, we demonstrate that the C-lobe fragment of CaM in IQ1 is necessary for mediating Ca(2+) regulation of myosin 5a, suggesting that the C-lobe fragment of CaM in IQ1 participates in the interaction between the head and the tail. We propose that Ca(2+) induces a conformational change of the C-lobe of CaM in IQ1 and prevents interaction between the head and the tail, thus activating motor function.  相似文献   

18.
Lieto-Trivedi A  Coluccio LM 《Biochemistry》2008,47(38):10218-10226
To investigate the interaction of mammalian class I myosin, Myo1c, with its light chain calmodulin, we expressed (with calmodulin) truncation mutants consisting of the Myo1c motor domain followed by 0-4 presumed calmodulin-binding (IQ) domains (Myo1c (0IQ)-Myo1c (4IQ)). The amount of calmodulin associating with the Myo1c heavy chain increased with increasing number of IQ domains from Myo1c (0IQ) to Myo1c (3IQ). No calmodulin beyond that associated with Myo1c (3IQ) was found with Myo1c (4IQ) despite its availability, showing that Myo1c binds three molecules of calmodulin with no evidence of a fourth IQ domain. Unlike Myo1c (0IQ), the basal ATPase activity of Myo1c (1IQ) was >10-fold higher in Ca (2+) vs EGTA +/- exogenous calmodulin, showing that regulation is by Ca (2+) binding to calmodulin on the first IQ domain. The K m and V max of the actin-activated Mg (2+)-ATPase activity were largely independent of the number of IQ domains present and moderately affected by Ca (2+). In binding assays, some calmodulin pelleted with Myo1c heavy chain when actin was present, but a considerable fraction remained in the supernatant, suggesting that calmodulin is displaced most likely from the second IQ domain. The Myo1c heavy chain associated with actin in a nucleotide-dependent fashion. In ATP a smaller proportion of calmodulin pelleted with the heavy chain, suggesting that Myo1c undergoes nucleotide-dependent conformational changes that affect the affinity of calmodulin for the heavy chain. The studies support a model in which Myo1c in the inner ear is regulated by both Ca (2+) and nucleotide, which exert their effects on motor activity through the light-chain-binding region.  相似文献   

19.
Secretion is dependent on a rise in cytosolic Ca(2+)concentration and is associated with dramatic changes in actin organization. The actin cortex may act as a barrier between secretory vesicles and plasma membrane. Thus, disassembly of this cortex should precede late steps of exocytosis. Here we investigate regulation of both the actin cytoskeleton and secretion by calmodulin. Ca(2+), together with ATP, induces cortical F-actin disassembly in permeabilized rat peritoneal mast cells. This effect is strongly inhibited by removing endogenous calmodulin (using calmodulin inhibitory peptides), and increased by exogenous calmodulin. Neither treatment, however, affects secretion. Low concentrations ( approximately 1 microM) of a specific inhibitor of myosin light chain kinase, ML-7, prevent F-actin disassembly, but not secretion. In contrast, a myosin inhibitor affecting both conventional and unconventional myosins, BDM, decreases cortical disassembly as well as secretion. Observations of fluorescein-calmodulin, introduced into permeabilized cells, confirmed a strong (Ca(2+)-independent) association of calmodulin with the actin cortex. In addition, fluorescein-calmodulin enters the nuclei in a Ca(2+)-dependent manner. In conclusion, calmodulin promotes myosin II-based contraction of the membrane cytoskeleton, which is a prerequisite for its disassembly. The late steps of exocytosis, however, require neither calmodulin nor cortical F-actin disassembly, but may be modulated by unconventional myosin(s).  相似文献   

20.
Brain myosin-Va consists of two heavy chains, each containing a neck domain with six tandem IQ motifs that bind four to five calmodulins and one to two essential light chains. Previous studies demonstrated that myosin-Va exhibits an unusually high affinity for F-actin in the presence of ATP and that its MgATPase activity is stimulated by micromolar Ca(2+) in a highly cooperative manner. We demonstrate here that Ca(2+) also induces myosin-Va binding to and cosedimentation with F-actin in the presence of ATP in a similar cooperative manner and calcium concentration range as that observed for the ATPase activity. Neither hydrolysis of ATP nor buildup of ADP was required for Ca(2+)-induced cosedimentation. The Ca(2+)-induced binding was inhibited by low temperature or by 0.6 m NaCl, but not by 1% Triton X-100. Tight binding between myosin-Va and pyrene-labeled F-actin in the presence of ATP and Ca(2+) was also detected by quenching of the pyrene fluorescence. Negatively stained preparations of actomyosin-Va under Ca(2+)-induced binding conditions showed tightly packed F-actin bundles cross-linked by myosin-Va. Our data demonstrate that high affinity binding of myosin-Va and F-actin in the presence of ATP or 5'-O-(thiotriphosphate) is induced by micromolar concentrations of Ca(2+). Since Ca(2+) regulates both the actin binding properties and actin-activated ATPase of myosin-Va over the same concentration range, we suggest that the calcium signal may regulate the mechanism of processivity of myosin Va.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号