首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Identifying non-coding RNA regions on the genome using computational methods is currently receiving a lot of attention. In general, it is essentially more difficult than the problem of detecting protein-coding genes because non-coding RNA regions have only weak statistical signals. On the other hand, most functional RNA families have conserved sequences and secondary structures which are characteristic of their molecular function in a cell. These are known as sequence motifs and consensus structures, respectively. In this paper, we propose an improved method which extends a pairwise structural alignment method for RNA sequences to handle position specific scoring matrices and hence to incorporate motifs into structural alignment of RNA sequences. To model sequence motifs, we employ position specific scoring matrices (PSSMs). Experimental results show that PSSMs enable us to find individual RNA families efficiently, especially if we have biological knowledge such as sequence motifs. K. Sato and K. Morita contributed equally to this work.  相似文献   

2.
MOTIVATION: Biologists frequently align multiple biological sequences to determine consensus sequences and/or search for predominant residues and conserved regions. Particularly, determining conserved regions in an alignment is one of the most important activities. Since protein sequences are often several-hundred residues or longer, it is difficult to distinguish biologically important conserved regions (motifs or domains) from others. The widely used tools, Logos, Al2co, Confind, and the entropy-based method, often fail to highlight such regions. Thus a computational tool that can highlight biologically important regions accurately will be highly desired. RESULTS: This paper presents a new scoring scheme ARCS (Aggregated Related Column Score) for aligned biological sequences. ARCS method considers not only the traditional character similarity measure but also column correlation. In an extensive experimental evaluation using 533 PROSITE patterns, ARCS is able to highlight the motif regions with up to 77.7% accuracy corresponding to the top three peaks. AVAILABILITY: The source code is available on http://bio.informatics.indiana.edu/projects/arcs and http://goldengate.case.edu/projects/arcs  相似文献   

3.
Multiple sequence alignment by consensus.   总被引:5,自引:3,他引:2       下载免费PDF全文
An algorithm for multiple sequence alignment is given that matches words of length and degree of mismatch chosen by the user. The alignment maximizes an alignment scoring function. The method is based on a novel extension of our consensus sequence methods. The algorithm works for both DNA and protein sequences, and from earlier work on consensus sequences, it is possible to estimate statistical significance.  相似文献   

4.
MOTIVATION: Membrane-bound proteins are a special class of proteins. The regions that insert into the cell-membrane have a profoundly different hydrophobicity pattern compared with soluble proteins. Multiple alignment techniques use scoring schemes tailored for sequences of soluble proteins and are therefore in principle not optimal to align membrane-bound proteins. RESULTS: Transmembrane (TM) regions in protein sequences can be reliably recognized using state-of-the-art sequence prediction techniques. Furthermore, membrane-specific scoring matrices are available. We have developed a new alignment method, called PRALINETM, which integrates these two features to enhance multiple sequence alignment. We tested our algorithm on the TM alignment benchmark set by Bahr et al. (2001), and showed that the quality of TM alignments can be significantly improved compared with the quality produced by a standard multiple alignment technique. The results clearly indicate that the incorporation of these new elements into current state-of-the-art alignment methods is crucial for optimizing the alignment of TM proteins. AVAILABILITY: A webserver is available at http://www.ibi.vu.nl/programs/pralinewww.  相似文献   

5.
A structure-based method for protein sequence alignment   总被引:1,自引:0,他引:1  
MOTIVATION: With the continuing rapid growth of protein sequence data, protein sequence comparison methods have become the most widely used tools of bioinformatics. Among these methods are those that use position-specific scoring matrices (PSSMs) to describe protein families. PSSMs can capture information about conserved patterns within families, which can be used to increase the sensitivity of searches for related sequences. Certain types of structural information, however, are not generally captured by PSSM search methods. Here we introduce a program, Structure-based ALignment TOol (SALTO), that aligns protein query sequences to PSSMs using rules for placing and scoring gaps that are consistent with the conserved regions of domain alignments from NCBI's Conserved Domain Database. RESULTS: In most cases, the alignment scores obtained using the local alignment version follow an extreme value distribution. SALTO's performance in finding related sequences and producing accurate alignments is similar to or better than that of IMPALA; one advantage of SALTO is that it imposes an explicit gapping model on each protein family. AVAILABILITY: A stand-alone version of the program that can generate global or local alignments is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/SALTO/), and has been incorporated to Cn3D structure/alignment viewer. CONTACT: bryant@ncbi.nlm.nih.gov.  相似文献   

6.
A comparison of scoring functions for protein sequence profile alignment   总被引:3,自引:0,他引:3  
MOTIVATION: In recent years, several methods have been proposed for aligning two protein sequence profiles, with reported improvements in alignment accuracy and homolog discrimination versus sequence-sequence methods (e.g. BLAST) and profile-sequence methods (e.g. PSI-BLAST). Profile-profile alignment is also the iterated step in progressive multiple sequence alignment algorithms such as CLUSTALW. However, little is known about the relative performance of different profile-profile scoring functions. In this work, we evaluate the alignment accuracy of 23 different profile-profile scoring functions by comparing alignments of 488 pairs of sequences with identity < or =30% against structural alignments. We optimize parameters for all scoring functions on the same training set and use profiles of alignments from both PSI-BLAST and SAM-T99. Structural alignments are constructed from a consensus between the FSSP database and CE structural aligner. We compare the results with sequence-sequence and sequence-profile methods, including BLAST and PSI-BLAST. RESULTS: We find that profile-profile alignment gives an average improvement over our test set of typically 2-3% over profile-sequence alignment and approximately 40% over sequence-sequence alignment. No statistically significant difference is seen in the relative performance of most of the scoring functions tested. Significantly better results are obtained with profiles constructed from SAM-T99 alignments than from PSI-BLAST alignments. AVAILABILITY: Source code, reference alignments and more detailed results are freely available at http://phylogenomics.berkeley.edu/profilealignment/  相似文献   

7.
MOTIVATION: Molecular biologists frequently can obtain interesting insight by aligning a set of related DNA, RNA or protein sequences. Such alignments can be used to determine either evolutionary or functional relationships. Our interest is in identifying functional relationships. Unless the sequences are very similar, it is necessary to have a specific strategy for measuring-or scoring-the relatedness of the aligned sequences. If the alignment is not known, one can be determined by finding an alignment that optimizes the scoring scheme. RESULTS: We describe four components to our approach for determining alignments of multiple sequences. First, we review a log-likelihood scoring scheme we call information content. Second, we describe two methods for estimating the P value of an individual information content score: (i) a method that combines a technique from large-deviation statistics with numerical calculations; (ii) a method that is exclusively numerical. Third, we describe how we count the number of possible alignments given the overall amount of sequence data. This count is multiplied by the P value to determine the expected frequency of an information content score and, thus, the statistical significance of the corresponding alignment. Statistical significance can be used to compare alignments having differing widths and containing differing numbers of sequences. Fourth, we describe a greedy algorithm for determining alignments of functionally related sequences. Finally, we test the accuracy of our P value calculations, and give an example of using our algorithm to identify binding sites for the Escherichia coli CRP protein. AVAILABILITY: Programs were developed under the UNIX operating system and are available by anonymous ftp from ftp://beagle.colorado.edu/pub/consensus.  相似文献   

8.
When aligning biological sequences, the choice of parameter values for the alignment scoring function is critical. Small changes in gap penalties, for example, can yield radically different alignments. A rigorous way to compute parameter values that are appropriate for aligning biological sequences is through inverse parametric sequence alignment. Given a collection of examples of biologically correct alignments, this is the problem of finding parameter values that make the scores of the example alignments close to those of optimal alignments for their sequences. We extend prior work on inverse parametric alignment to partial examples, which contain regions where the alignment is left unspecified, and to an improved formulation based on minimizing the average error between the score of an example and the score of an optimal alignment. Experiments on benchmark biological alignments show we can find parameters that generalize across protein families and that boost the accuracy of multiple sequence alignment by as much as 25%.  相似文献   

9.
Post-processing long pairwise alignments   总被引:2,自引:0,他引:2  
MOTIVATION: The local alignment problem for two sequences requires determining similar regions, one from each sequence, and aligning those regions. For alignments computed by dynamic programming, current approaches for selecting similar regions may have potential flaws. For instance, the criterion of Smith and Waterman can lead to inclusion of an arbitrarily poor internal segment. Other approaches can generate an alignment scoring less than some of its internal segments. RESULTS: We develop an algorithm that decomposes a long alignment into sub-alignments that avoid these potential imperfections. Our algorithm runs in time proportional to the original alignment's length. Practical applications to alignments of genomic DNA sequences are described.  相似文献   

10.
SUMMARY: SQUINT is a sequence alignment tool, and combines both automated progressive sequence alignment with facilities for manual editing. The program imports nucleotide or amino acid sequence multiple alignment files in standard formats, and permits users to view two translations of the same multiple alignment simultaneously. Edits in one view are instantaneously reflected in the other, and the scoring cost of the changes are shown in real-time. Progressive multiple alignments, using a variety of alignment parameters, can be performed on any block of sequences, including blocks embedded in the existing alignment. AVAILABILITY: The software is freely available for download at http://www.cebl.auckland.ac.nz  相似文献   

11.
Adenosine-to-inosine modification of RNA molecules (A-to-I RNA editing) is an important mechanism that increases transciptome diversity. It occurs when a genomically encoded adenosine (A) is converted to an inosine (I) by ADAR proteins. Sequencing reactions read inosine as guanosine (G); therefore, current methods to detect A-to-I editing sites align RNA sequences to their corresponding DNA regions and identify A-to-G mismatches. However, such methods perform poorly on RNAs that underwent extensive editing ("ultra"-editing), as the large number of mismatches obscures the genomic origin of these RNAs. Therefore, only a few anecdotal ultra-edited RNAs have been discovered so far. Here we introduce and apply a novel computational method to identify ultra-edited RNAs. We detected 760 ESTs containing 15,646 editing sites (more than 20 sites per EST, on average), of which 13,668 are novel. Ultra-edited RNAs exhibit the known sequence motif of ADARs and tend to localize in sense strand Alu elements. Compared to sites of mild editing, ultra-editing occurs primarily in Alu-rich regions, where potential base pairing with neighboring, inverted Alus creates particularly long double-stranded RNA structures. Ultra-editing sites are underrepresented in old Alu subfamilies, tend to be non-conserved, and avoid exons, suggesting that ultra-editing is usually deleterious. A possible biological function of ultra-editing could be mediated by non-canonical splicing and cleavage of the RNA near the editing sites.  相似文献   

12.
Multiple Sequence Alignment (MSA) methods are typically benchmarked on sets of reference alignments. The quality of the alignment can then be represented by the sum-of-pairs (SP) or column (CS) scores, which measure the agreement between a reference and corresponding query alignment. Both the SP and CS scores treat mismatches between a query and reference alignment as equally bad, and do not take the separation into account between two amino acids in the query alignment, that should have been matched according to the reference alignment. This is significant since the magnitude of alignment shifts is often of relevance in biological analyses, including homology modeling and MSA refinement/manual alignment editing. In this study we develop a new alignment benchmark scoring scheme, SPdist, that takes the degree of discordance of mismatches into account by measuring the sequence distance between mismatched residue pairs in the query alignment. Using this new score along with the standard SP score, we investigate the discriminatory behavior of the new score by assessing how well six different MSA methods perform with respect to BAliBASE reference alignments. The SP score and the SPdist score yield very similar outcomes when the reference and query alignments are close. However, for more divergent reference alignments the SPdist score is able to distinguish between methods that keep alignments approximately close to the reference and those exhibiting larger shifts. We observed that by using SPdist together with SP scoring we were able to better delineate the alignment quality difference between alternative MSA methods. With a case study we exemplify why it is important, from a biological perspective, to consider the separation of mismatches. The SPdist scoring scheme has been implemented in the VerAlign web server (http://www.ibi.vu.nl/programs/veralignwww/). The code for calculating SPdist score is also available upon request.  相似文献   

13.
Alignment of protein sequences is a key step in most computational methods for prediction of protein function and homology-based modeling of three-dimensional (3D)-structure. We investigated correspondence between "gold standard" alignments of 3D protein structures and the sequence alignments produced by the Smith-Waterman algorithm, currently the most sensitive method for pair-wise alignment of sequences. The results of this analysis enabled development of a novel method to align a pair of protein sequences. The comparison of the Smith-Waterman and structure alignments focused on their inner structure and especially on the continuous ungapped alignment segments, "islands" between gaps. Approximately one third of the islands in the gold standard alignments have negative or low positive score, and their recognition is below the sensitivity limit of the Smith-Waterman algorithm. From the alignment accuracy perspective, the time spent by the algorithm while working in these unalignable regions is unnecessary. We considered features of the standard similarity scoring function responsible for this phenomenon and suggested an alternative hierarchical algorithm, which explicitly addresses high scoring regions. This algorithm is considerably faster than the Smith-Waterman algorithm, whereas resulting alignments are in average of the same quality with respect to the gold standard. This finding shows that the decrease of alignment accuracy is not necessarily a price for the computational efficiency.  相似文献   

14.
We describe a new strategy for utilizing multiple sequence alignment information to detect distant relationships in searches of sequence databases. A single sequence representing a protein family is enriched by replacing conserved regions with position-specific scoring matrices (PSSMs) or consensus residues derived from multiple alignments of family members. In comprehensive tests of these and other family representations, PSSM-embedded queries produced the best results overall when used with a special version of the Smith-Waterman searching algorithm. Moreover, embedding consensus residues instead of PSSMs improved performance with readily available single sequence query searching programs, such as BLAST and FASTA. Embedding PSSMs or consensus residues into a representative sequence improves searching performance by extracting multiple alignment information from motif regions while retaining single sequence information where alignment is uncertain.  相似文献   

15.
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

16.
Dong E  Smith J  Heinze S  Alexander N  Meiler J 《Gene》2008,422(1-2):41-46
BCL::Align is a multiple sequence alignment tool that utilizes the dynamic programming method in combination with a customizable scoring function for sequence alignment and fold recognition. The scoring function is a weighted sum of the traditional PAM and BLOSUM scoring matrices, position-specific scoring matrices output by PSI-BLAST, secondary structure predicted by a variety of methods, chemical properties, and gap penalties. By adjusting the weights, the method can be tailored for fold recognition or sequence alignment tasks at different levels of sequence identity. A Monte Carlo algorithm was used to determine optimized weight sets for sequence alignment and fold recognition that most accurately reproduced the SABmark reference alignment test set. In an evaluation of sequence alignment performance, BCL::Align ranked best in alignment accuracy (Cline score of 22.90 for sequences in the Twilight Zone) when compared with Align-m, ClustalW, T-Coffee, and MUSCLE. ROC curve analysis indicates BCL::Align's ability to correctly recognize protein folds with over 80% accuracy. The flexibility of the program allows it to be optimized for specific classes of proteins (e.g. membrane proteins) or fold families (e.g. TIM-barrel proteins). BCL::Align is free for academic use and available online at http://www.meilerlab.org/.  相似文献   

17.
Skolnick J  Kihara D 《Proteins》2001,42(3):319-331
PROSPECTOR (PROtein Structure Predictor Employing Combined Threading to Optimize Results) is a new threading approach that uses sequence profiles to generate an initial probe-template alignment and then uses this "partly thawed" alignment in the evaluation of pair interactions. Two types of sequence profiles are used: the close set, composed of sequences in which sequence identity lies between 35% and 90%; and the distant set, composed of sequences with a FASTA E-score less than 10. Thus, a total of four scoring functions are used in a hierarchical method: the close (distant) sequence profiles screen a structural database to provide an initial alignment of the probe sequence in each of the templates. The same database is then screened with a scoring function composed of sequence plus secondary structure plus pair interaction profiles. This combined hierarchical threading method is called PROSPECTOR1. For the original Fischer database, 59 of 68 pairs are correctly identified in the top position. Next, the set of the top 20 scoring sequences (four scoring functions times the top five structures) is used to construct a protein-specific pair potential based on consensus side-chain contacts occurring in 25% of the structures. In subsequent threading iterations, this protein-specific pair potential, when combined in a composite manner, is found to be more sensitive in identifying the correct pairs than when the original statistical potential is used, and it increases the number of recognized structures for the combined scoring functions, termed PROSPECTOR2, to a total of 61 Fischer pairs identified in the top position. Application to a second, smaller Fischer database of 27 probe-template pairs places 18 (17) structures in the top position for PROSPECTOR1 (PROSPECTOR2). Overall, these studies show that the use of pair interactions as assessed by the improved Z-score enhances the specificity of probe-template matches. Thus, when the hierarchy of scoring functions is combined, the ability to identify correct probe-template pairs is significantly enhanced. Finally, a web server has been established for use by the academic community (http://bioinformatics.danforthcenter.org/services/threading.html).  相似文献   

18.
MOTIVATION: Structural RNA genes exhibit unique evolutionary patterns that are designed to conserve their secondary structures; these patterns should be taken into account while constructing accurate multiple alignments of RNA genes. The Sankoff algorithm is a natural alignment algorithm that includes the effect of base-pair covariation in the alignment model. However, the extremely high computational cost of the Sankoff algorithm precludes its application to most RNA sequences. RESULTS: We propose an efficient algorithm for the multiple alignment of structural RNA sequences. Our algorithm is a variant of the Sankoff algorithm, and it uses an efficient scoring system that reduces the time and space requirements considerably without compromising on the alignment quality. First, our algorithm computes the match probability matrix that measures the alignability of each position pair between sequences as well as the base pairing probability matrix for each sequence. These probabilities are then combined to score the alignment using the Sankoff algorithm. By itself, our algorithm does not predict the consensus secondary structure of the alignment but uses external programs for the prediction. We demonstrate that both the alignment quality and the accuracy of the consensus secondary structure prediction from our alignment are the highest among the other programs examined. We also demonstrate that our algorithm can align relatively long RNA sequences such as the eukaryotic-type signal recognition particle RNA that is approximately 300 nt in length; multiple alignment of such sequences has not been possible by using other Sankoff-based algorithms. The algorithm is implemented in the software named 'Murlet'. AVAILABILITY: The C++ source code of the Murlet software and the test dataset used in this study are available at http://www.ncrna.org/papers/Murlet/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

19.
A global alignment of EF-G(2) sequences was corrected by reference to protein structure. The selection of characters eligible for construction of phylogenetic trees was optimized by searching for regions arising from the artifactual matching of sequence segments unique to different phylogenetic domains. The spurious matchings were identified by comparing all sections of the global alignment with a comprehensive inventory of significant binary alignments obtained by BLAST probing of the DNA and protein databases with representative EF-G(2) sequences. In three discrete alignment blocks (one in domain II and two in domain IV), the alignment of the bacterial sequences with those of Archaea–Eucarya was not retrieved by database probing with EF-G(2) sequences, and no EF-G homologue of the EF-2 sequence segments was detected by using partial EF-G(2) sequences as probes in BLAST/FASTA searches. The two domain IV regions (one of which comprises the ADP-ribosylatable site of EF-2) are almost certainly due to the artifactual alignment of insertion segments that are unique to Bacteria and to Archaea–Eucarya. Phylogenetic trees have been constructed from the global alignment after deselecting positions encompassing the unretrieved, spuriously aligned regions, as well as positions arising from misalignment of the G′ and G″ subdomain insertion segments flanking the ``fifth' consensus motif of the G domain (?varsson, 1995). The results show inconsistencies between trees inferred by alternative methods and alternative (DNA and protein) data sets with regard to Archaea being a monophyletic or paraphyletic grouping. Both maximum-likelihood and maximum-parsimony methods do not allow discrimination (by log-likelihood difference and difference in number of inferred substitutions) between the conflicting (monophyletic vs. paraphyletic Archaea) topologies. No specific EF-2 insertions (or terminal accretions) supporting a crenarchaeal–eucaryal clade are detectable in the new EF-G(2) sequence alignment.  相似文献   

20.
MOTIVATION: Even the best sequence alignment methods frequently fail to correctly identify the framework regions for which backbones can be copied from the template into the target structure. Since the underprediction and, more significantly, the overprediction of these regions reduces the quality of the final model, it is of prime importance to attain as much as possible of the true structural alignment between target and template. RESULTS: We have developed an algorithm called Consensus that consistently provides a high quality alignment for comparative modeling. The method follows from a benchmark analysis of the 3D models generated by ten alignment techniques for a set of 79 homologous protein structure pairs. For 20-to-40% of the targets, these methods yield models with at least 6 A root mean square deviation (RMSD) from the native structure. We have selected the top five performing methods, and developed a consensus algorithm to generate an improved alignment. By building on the individual strength of each method, a set of criteria was implemented to remove the alignment segments that are likely to correspond to structurally dissimilar regions. The automated algorithm was validated on a different set of 48 protein pairs, resulting in 2.2 A average RMSD for the predicted models, and only four cases in which the RMSD exceeded 3 A. The average length of the alignments was about 75% of that found by standard structural superposition methods. The performance of Consensus was consistent from 2 to 32% target-template sequence identity, and hence it can be used for accurate prediction of framework regions in homology modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号