首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tonoplast intrinsic protein isoforms as markers for vacuolar functions   总被引:21,自引:0,他引:21       下载免费PDF全文
GY Jauh  TE Phillips    JC Rogers 《The Plant cell》1999,11(10):1867-1882
Plant cell vacuoles may have storage or lytic functions, but biochemical markers specific for the tonoplasts of functionally distinct vacuoles are poorly defined. Here, we use antipeptide antibodies specific for the tonoplast intrinsic proteins alpha-TIP, gamma-TIP, and delta-TIP in confocal immunofluorescence experiments to test the hypothesis that different TIP isoforms may define different vacuole functions. Organelles labeled with these antibodies were also labeled with antipyrophosphatase antibodies, demonstrating that regardless of their size, they had the expected characteristics of vacuoles. Our results demonstrate that the storage vacuole tonoplast contains delta-TIP, protein storage vacuoles containing seed-type storage proteins are marked by alpha- and delta- or alpha- and delta- plus gamma-TIP, whereas vacuoles storing vegetative storage proteins and pigments are marked by delta-TIP alone or delta- plus gamma-TIP. In contrast, those marked by gamma-TIP alone have characteristics of lytic vacuoles, and results from other researchers indicate that alpha-TIP alone is a marker for autophagic vacuoles. In root tips, relatively undifferentiated cells that contain vacuoles labeled separately for each of the three TIPs have been identified. These results argue that plant cells have the ability to generate and maintain three separate vacuole organelles, with each being marked by a different TIP, and that the functional diversity of the vacuolar system may be generated from different combinations of the three basic types.  相似文献   

2.
The membranes of plant and animal cells contain aquaporins, proteins that facilitate the transport of water. In plants, aquaporins are found in the vacuolar membrane (tonoplast) and the plasma membrane. Many aquaporins are mercury sensitive, and in AQP1, a mercury-sensitive cysteine residue (Cys-189) is present adjacent to a conserved Asn-Pro-Ala motif. Here, we report the molecular analysis of a new Arabidopsis aquaporin, delta-TIP (for tonoplast intrinsic protein), and show that it is located in the tonoplast. The water channel activity of delta-TIP is sensitive to mercury. However, the mercury-sensitive cysteine residue found in mammalian aquaporins is not present in delta-TIP, or in gamma-TIP, a previously characterized mercury-sensitive tonoplast aquaporin. Site-directed mutagenesis was used to identify the mercury-sensitive site in these two aquaporins as Cys-116 and Cys-118 for delta-TIP and gamma-TIP, respectively. These mutations are at a conserved position in a presumed membrane-spanning domain not previously known to have a role in aquaporin mercury sensitivity. Comparing the tissue expression patterns of delta-TIP with gamma-TIP and alpha-TIP showed that the TIPs are differentially expressed.  相似文献   

3.
Plant cells are considered to possess functionally different types of vacuoles in the same cell. One of the papers cited in support of this concept reported that protein storage and lytic vacuoles in root tips of barley (Hordeum vulgare) and pea (Pisum sativum) seedlings were initially separate compartments that later fused to form a central vacuole during cell elongation. We have reinvestigated the situation in these two roots using immunogold electron microscopy as well as immunofluorescence microscopy of histological sections. Using antisera generated against the whole protein of alpha-tonoplast intrinsic protein (TIP) as well as specific C-terminal TIP peptide antisera against alpha-, gamma-, and delta-TIP, together with antisera against the storage proteins barley lectin and pea legumin and vicilin, we were unable to obtain evidence for separate vacuole populations. Instead, our observations point to the formation of a single type of vacuole in cells differentiating both proximally and distally from the root meristem. This is a hybrid-type vacuole containing storage proteins and having both alpha- and gamma-TIPs, but not delta-TIP, in its tonoplast. As cells differentiate toward the zone of elongation, their vacuoles are characterized by increasing amounts of gamma-TIP and decreasing amounts of alpha-TIP.  相似文献   

4.
An abundant TIP expressed in mature highly vacuolated cells   总被引:2,自引:0,他引:2  
Aquaporins are water channel proteins found in vacuolar membranes and plasma membranes, and belong to the major intrinsic protein (MIP) family of proteins. In the present study, we purified a 75 kDa MIP protein from a crude fraction of spinach leaf intracellular membranes. Upon urea/SDS-PAGE, the 75 kDa protein appeared as a 21 kDa polypeptide, and the 75 kDa species therefore probably represents a tetramer. The corresponding cDNA was obtained by PCR cloning and had an open reading frame encoding a 25.1 kDa protein. The protein, So-deltaTIP, was most homologous to the tonoplast intrinsic protein (TIP) subfamily of plant MIPs. Using affinity-purified So-deltaTIP-specific peptide antibodies, we investigated the subcellular and tissue distribution of So-deltaTIP. So-deltaTIP was specifically located in the vacuolar membrane. It was abundant in most vacuolated cells in all vegetative organs, but was excluded from the leaf epidermis as well as from the root phloem parenchyma and meristem. In spite of the high sequence homology between delta-TIPs of spinach, Arabidopsis, sunflower and radish, their expression patterns were totally different. However, a comparison of the expression pattern of So-deltaTIP with that of more distantly related TIPs showed similarities with Arabidopsis gamma-TIP, which is expressed in zones of cell elongation/differentiation but excluded from meristematic tissues. Meristematic cells are characterized by many small vacuoles as opposed to elongating and mature cells, which generally harbour a single, large vacuole. Our results indicate that the expression of So-deltaTIP may be induced when the large vacuole is formed.  相似文献   

5.
The plant vacuole is a multifunctional organelle which is essential for growth and development. To visualize the dynamics of plant vacuolar membranes, gamma-TIP (tonoplast intrinsic protein) was fused to GFP and expressed in Arabidopsis thaliana. The marker molecule was targeted to the vacuolar membranes in most tissues, as expected. In rapidly expanding cells, some additional spherical structures were often observed within the lumen of vacuoles, which emitted strong fluorescence. To confirm their normal presence, we examined wild-type Arabidopsis cotyledons by transmission electron microscopy. The metal-contact rapid-freezing method revealed that the vacuolar lumen of epidermal cells contained many cytoplasmic projections, which often formed spherical structures (1-3 microm diameter) consisting of double membranes. Thus we concluded that these structures are authentic and named them 'bulbs'. Three-dimensional reconstruction from serial electron microscopic images demonstrates that bulbs are very intricately folded, but are continuous with the limiting vacuolar membrane. The fluorescence intensity of bulbs is about threefold higher than that of vacuolar membrane. GFP-AtRab75c, another marker of the vacuole, did not give fluorescent signals of bulbs in transgenic plants, but the existence of bulbs was still confirmed by electron microscopy. These results suggest that bulbs define a subregion in the continuous vacuolar membrane, where some proteins are concentrated and others segregated.  相似文献   

6.
The vacuolar membrane (tonoplast) of higher plant cells contains an abundant 27 kDa protein called TIP (tonoplast intrinsic protein) that occurs in different isoforms and belongs to a large family of homologous channel-like proteins found in bacteria, plants and animals. In the present study, we identified and characterized the function of gamma-TIP from Arabidopsis thaliana by expression of the protein in Xenopus oocytes. gamma-TIP increased the osmotic water permeability of oocytes 6- to 8-fold, to values in the range 1-1.5 x 10(-2) cm/s. Similar results were obtained with the homologous human erythrocyte protein CHIP28, recently identified as the erythrocyte water channel. The bacterial homolog GlpF did not affect the osmotic water permeability of oocytes, but facilitated glycerol uptake, in accordance with its known function. By contrast, gamma-TIP did not promote glycerol permeability. Voltage clamp experiments provided evidence showing that gamma-TIP induced no electrogenic ion transport in oocytes, especially during osmotic challenge that resulted in massive transport of water. These results allow us to conclude that the various protein members of the MIP family have unique and specific transport functions and that the plant protein gamma-TIP likely functions as a water specific channel in the vacuolar membrane.  相似文献   

7.
The vacuolar membrane (tonoplast) contains an abundant intrinsic protein with six membrane-spanning domains that is encoded by a small gene family. Different isoforms of tonoplast intrinsic protein (TIP) are expressed in different tissues or as a result of specific signals. Using promoter-β-glucuronidase (GUS) fusions and in situ hybridization, we have examined the expression of γ-TIP in Arabidopsis thaliana. GUS staining of plants transformed with promoter-GUS fusions showed that γ-TIP gene expression is high in recently formed tissues of young roots. In the shoot, γ-TIP gene expression was highest in the vascular bundles of stems and petioles, as well as in the stipules and in the receptacle of the flower. No GUS activity was detected in root or shoot meristems or in older tissues, suggesting temporal control of γ-TIP gene expression associated with cell elongation and/or differentiation. In situ hybridization carried out with whole seedlings confirmed that in root tips, γ-TIP mRNA was present only in the zone of cell elongation just behind the apical meristem. In seedling shoots, mRNA abundance was also found to be correlated with cell expansion. These results indicate that γ-TIP may be expressed primarily at the time when the large central vacuoles are being formed during cell enlargement.  相似文献   

8.
Tonoplast intrinsic proteins (TIPs) facilitate the membrane transport of water and other small molecules across the plant vacuolar membrane, and members of this family are expressed in specific developmental stages and tissue types. Delivery of TIP proteins to the tonoplast is thought to occur by vesicle-mediated traffic from the endoplasmic reticulum to the vacuole, and at least two pathways have been proposed, one that is Golgi-dependent and another that is Golgi-independent. However, the mechanisms for trafficking of vacuolar membrane proteins to the tonoplast remain poorly understood. Here we describe a chemical genetic approach to unravel the mechanisms of TIP protein targeting to the vacuole in Arabidopsis seedlings. We show that members of the TIP family are targeted to the vacuole via at least two distinct pathways, and we characterize the bioactivity of a novel inhibitor that can differentiate between them. We demonstrate that, unlike for TIP1;1, trafficking of markers for TIP3;1 and TIP2;1 is insensitive to Brefeldin A in Arabidopsis hypocotyls. Using a chemical inhibitor that may target this BFA-insensitive pathway for membrane proteins, we show that inhibition of this pathway results in impaired root hair growth and enhanced vacuolar targeting of the auxin efflux carrier PIN2 in the dark. Our results indicate that the vacuolar targeting of PIN2 and the BFA-insensitive pathway for tonoplast proteins may be mediated in part by common mechanisms.  相似文献   

9.
Vacuolar compartments associated with leaf senescence and the subcellular localization of the senescence-specific cysteine-protease SAG12 (senescence-associated gene 12) were studied using specific fluorescent markers, the expression of reporter genes, and the analysis of high-pressure frozen/freeze-substituted samples. Senescence-associated vacuoles (SAVs) with intense proteolytic activity develop in the peripheral cytoplasm of mesophyll and guard cells in Arabidopsis and soybean. The vacuolar identity of these compartments was confirmed by immunolabeling with specific antibody markers. SAVs and the central vacuole differ in their acidity and tonoplast composition: SAVs are more acidic than the central vacuole and, whereas the tonoplast of central vacuoles is highly enriched in gamma-TIP (tonoplast intrinsic protein), the tonoplast of SAVs lacks this aquaporin. The expression of a SAG12-GFP fusion protein in transgenic Arabidopsis plants shows that SAG12 localizes to SAVs. The analysis of Pro(SAG12):GUS transgenic plants indicates that SAG12 expression in senescing leaves is restricted to SAV-containing cells, for example, mesophyll and guard cells. A homozygous sag12 Arabidopsis mutant develops SAVs and does not show any visually detectable phenotypical alteration during senescence, indicating that SAG12 is not required either for SAV formation or for progression of visual symptoms of senescence. The presence of two types of vacuoles in senescing leaves could provide different lytic compartments for the dismantling of specific cellular components. The possible origin and functions of SAVs during leaf senescence are discussed.  相似文献   

10.
Actin microfilaments (MFs) participate in many fundamental processes in plant growth and development. Here, we report the co-localization of the actin MF and vacuolar membrane (VM), as visualized by vital VM staining with FM4-64 in living tobacco BY-2 cells stably expressing green fluorescent protein (GFP)-fimbrin (BY-GF11). The MFs were intensively localized on the VM surface and at the periphery of the cytoplasmic strands rather than at their center. The co-localization of MFs and VMs was confirmed by the observation made using transient expression of red fluorescent protein (RFP)-fimbrin in tobacco BY-2 cells stably expressing GFP-AtVam3p (BY-GV7) and BY-2 cells stably expressing gamma-tonoplast intrinsic protein (gamma-TIP)-GFP fusion protein (BY-GG). Time-lapse imaging revealed dynamic movement of MF structures which was parallel to that of cytoplasmic strands. Disruption of MF structures disorganized cytoplasmic strand structures and produced small spherical vacuoles in the VM-accumulating region. Three-dimensional reconstructions of the vacuolar structures revealed a disconnection of these small spherical vacuoles from the large vacuoles. Real-time observations and quantitative image analyses demonstrated rapid movements of MFs and VMs near the cell cortex, which were inhibited by the general myosin ATPase inhibitor, 2,3-butanedion monoxime (BDM). Moreover, both bistheonellide A (BA) and BDM treatment inhibited the reorganization of the cytoplasmic strands and the migration of daughter cell nuclei at early G1 phase, suggesting a requirement for the acto-myosin system for vacuolar morphogenesis during cell cycle progression. These results suggest that MFs support the vacuolar structures and that the acto-myosin system plays an essential role in vacuolar morphogenesis.  相似文献   

11.
Plant cell vacuoles are diverse and dynamic structures. In particular, during seed germination, the protein storage vacuoles are rapidly replaced by a central lytic vacuole enabling rapid elongation of embryo cells. In this study, we investigate the dynamic remodeling of vacuolar compartments during Arabidopsis seed germination using immunocytochemistry with antibodies against tonoplast intrinsic protein (TIP) isoforms as well as proteins involved in nutrient mobilization and vacuolar acidification. Our results confirm the existence of a lytic compartment embedded in the protein storage vacuole of dry seeds, decorated by γ-TIP, the vacuolar proton pumping pyrophosphatase (V-PPase) and the metal transporter NRAMP4. They further indicate that this compartment disappears after stratification. It is then replaced by a newly formed lytic compartment, labeled by γ-TIP and V-PPase but not AtNRAMP4, which occupies a larger volume as germination progresses. Altogether, our results indicate the successive occurrence of two different lytic compartments in the protein storage vacuoles of germinating Arabidopsis cells. We propose that the first one corresponds to globoids specialized in mineral storage and the second one is at the origin of the central lytic vacuole in these cells.  相似文献   

12.
To develop a new strategy to target recombinant proteins to the vacuolar storage system in transgenic plants, the ability of the transmembrane and cytosolic domains of Arabidopsis receptor homology-transmembrane-RING H2-1 (AtRMR1) was evaluated. A secreted version of RFP (secRFP) and a fusion of it to the transmembrane and cytosolic domains of AtRMR1 (RFP-TMCT) were produced and studied both in transient and stable expression assays. Transient expression in leaves of Nicotiana tabacum showed that secRFP is secreted to the apoplast while its fusion to TMCT of AtRMR1 is sufficient to prevent secretion of the reporter. In tobacco leaves, RFP-TMCT reporter showed an endoplasmic reticulum pattern in early expression stages while in late expression stages, it was found in the vacuolar lumen. For the first time, the role of TM and CT domains of AtRMR1 in stable expression in Arabidopsis thaliana is presented; the fusion of TMCT to secRFP is sufficient to sort RFP to the lumen of the central vacuoles in leaves and roots and to the lumen of PSV in cotyledons of mature embryos. In addition, biochemical studies performed in extract from transgenic plants showed that RFP-TMCT is an integral membrane protein. Full-length RFP-TMCT was also found in the vacuolar lumen, suggesting internalization into destination vacuole. Not colocalization of RFP-TMCT with tonoplast and plasma membrane markers were observed. This membrane vacuolar determinant sorting signal could be used for future application in molecular pharming as an alternative means to sort proteins of interest to vacuoles.  相似文献   

13.
Soluble proteins reach vacuoles because they contain vacuolar sorting determinants (VSDs) that are recognized by vacuolar sorting receptor (VSR) proteins. Pre-vacuolar compartments (PVCs), defined by VSRs and GFP-VSR reporters in tobacco BY-2 cells, are membrane-bound intermediate organelles that mediate protein traffic from the Golgi apparatus to the vacuole in plant cells. Multiple pathways have been demonstrated to be responsible for vacuolar transport of lytic enzymes and storage proteins to the lytic vacuole (LV) and the protein storage vacuole (PSV), respectively. However, the nature of PVCs for LV and PSV pathways remains unclear. Here, we used two fluorescent reporters, aleurain-GFP and 2S albumin-GFP, that represent traffic of lytic enzymes and storage proteins to LV and PSV, respectively, to study the PVC-mediated transport pathways via transient expression in suspension cultured cells. We demonstrated that the vacuolar transport of aleurain-GFP and 2S albumin-GFP was mediated by the same PVC populations in both tobacco BY-2 and Arabidopsis suspension cultured cells. These PVCs were defined by the seven GFP-AtVSR reporters. In wortmannin-treated cells, the vacuolated PVCs contained the mRFP-AtVSR reporter in their limiting membranes, whereas the soluble aleurain-GFP or 2S albumin-GFP remained in the lumen of the PVCs, indicating a possible in vivo relationship between receptor and cargo within PVCs.  相似文献   

14.
The plant vacuolar sorting receptor (VSR) binds proteins carrying vacuolar sorting signals (VSS) of the 'sequence-specific' type (ssVSS) but not the C-terminal, hydrophobic sorting signals (ctVSS). Seeds of Arabidopsis mutants lacking the major VSR isoform, AtVSR1, secrete a proportion of the proteins destined to storage vacuoles. The sorting signals for these proteins are not well defined, but they do not seem to be of the ssVSS type. Here, we tested whether absence of VSR1 in seeds leads to secretion of reporter proteins carrying ssVSS but not ctVSS. Our results show that reporters carrying either ssVSS or ctVSS are equally secreted in the absence of VSR1. We discuss our findings in relation to the current model for vacuolar sorting.  相似文献   

15.
The vacuole is the main cellular storage pool, where sucrose (Suc) accumulates to high concentrations. While a limited number of vacuolar membrane proteins, such as V-type H(+)-ATPases and H(+)-pyrophosphatases, are well characterized, the majority of vacuolar transporters are still unidentified, among them the transporter(s) responsible for vacuolar Suc uptake and release. In search of novel tonoplast transporters, we used a proteomic approach, analyzing the tonoplast fraction of highly purified mesophyll vacuoles of the crop plant barley (Hordeum vulgare). We identified 101 proteins, including 88 vacuolar and putative vacuolar proteins. The Suc transporter (SUT) HvSUT2 was discovered among the 40 vacuolar proteins, which were previously not reported in Arabidopsis (Arabidopsis thaliana) vacuolar proteomic studies. To confirm the tonoplast localization of this Suc transporter, we constructed and expressed green fluorescent protein (GFP) fusion proteins with HvSUT2 and its closest Arabidopsis homolog, AtSUT4. Transient expression of HvSUT2-GFP and AtSUT4-GFP in Arabidopsis leaves and onion (Allium cepa) epidermal cells resulted in green fluorescence at the tonoplast, indicating that these Suc transporters are indeed located at the vacuolar membrane. Using a microcapillary, we selected mesophyll protoplasts from a leaf protoplast preparation and demonstrated unequivocally that, in contrast to the companion cell-specific AtSUC2, HvSUT2 and AtSUT4 are expressed in mesophyll protoplasts, suggesting that HvSUT2 and AtSUT4 are involved in transport and vacuolar storage of photosynthetically derived Suc.  相似文献   

16.
The vacuole, a multifunctional organelle of most plant cells, has very important roles in space filling, osmotic adjustment, storage and digestion. Previous researches suggested that aquaporins in the tonoplast were involved in vacuolar functions. The rice genome contains 33 aquaporin genes, 10 of which encode tonoplast intrinsic proteins (TIPs). However, the function of each individual TIP isoform and the integrated function of TIPs under various physiological conditions remain elusive. Here, five rice TIP members were characterized with water and/or glycerol transport activities using the Xenopus oocyte expression system. OsTIP1;2, OsTIP2;2, OsTIP4;1 and OsTIP5;1 possessed water transport activity. OsTIP1;2, OsTIP3;2 and OsTIP4;1 were demonstrated with glycerol transport activity. Rice TIP expression patterns under various abiotic stress conditions including dehydration, high salinity, abscisic acid (ABA) and during seed germination were investigated by real-time PCR. OsTIP1s (OsTIP1;1 and OsTIP1;2) were highly expressed during seed germination, whereas OsTIP3s (OsTIP3;1 and OsTIP3;2) were specifically expressed in mature seeds with a decrease in expression levels upon germination. The results of this research provided a functional and expression profiles of rice TIPs.  相似文献   

17.
The tonoplast mediates the transport of various ions and metabolites between the vacuole and cytosol by mechanisms that remain to be elucidated at the molecular level. The primary structure of only one tonoplast protein, the H(+)-ATPase, has been reported to date. Here we report the primary structure of tonoplast intrinsic protein (TIP), a 27-kilodalton intrinsic membrane protein that occurs widely in the tonoplasts of the protein storage vacuoles (protein bodies) of seeds [Johnson, K.D., et al. (1989). Plant Physiol. 91, 1006-1013]. Hydropathy plots and secondary structure analysis of the polypeptide predict six membrane-spanning domains connected by short loops and hydrophilic, cytoplasmically oriented N- and C-terminal regions. TIP displays significant homology with several other membrane proteins from diverse sources: major intrinsic polypeptide from bovine lens fiber plasma membrane; NOD 26, a peribacteroid membrane protein in the nitrogen-fixing root nodules of soybean; and interestingly, GIpF, the glycerol facilitator transport protein in the cytoplasmic membrane of Escherichia coli. Based on the homology between TIP and GIpF and the knowledge that the protein storage vacuolar membrane and the peribacteroid membrane are active in solute transport, we propose that TIP transports small metabolites between the storage vacuoles and cytoplasm of seed storage tissues.  相似文献   

18.
19.
Neuhaus HE 《FEBS letters》2007,581(12):2223-2226
Mesophyll cells and most types of storage cells harbor large central vacuoles representing the main cellular store for sugars and other primary metabolites like carboxylic- or and amino acids. The general biochemical characteristics of sugar transport across the vacuolar membrane are already known since a couple of years but only recently the first tonoplast sugar carriers have been identified on the molecular level. A candidate sucrose carrier has been identified in a proteomic approach. In Arabidopsis, the tonoplast monosaccharide transporters (TMT) represent a small protein family comprising only three members, which reside in the vacuolar membrane. Two of three tmt genes are induced upon cold, drought or salt stress and tmt knock out mutants exhibit altered monosaccharide levels upon cold induction. These observations indicate that TMT proteins represent the first examples of tonoplast sugar carriers involved in the cellular response upon osmotic stress stimuli.  相似文献   

20.
Miao Y  Yan PK  Kim H  Hwang I  Jiang L 《Plant physiology》2006,142(3):945-962
We have previously demonstrated that vacuolar sorting receptor (VSR) proteins are concentrated on prevacuolar compartments (PVCs) in plant cells. PVCs in tobacco (Nicotiana tabacum) BY-2 cells are multivesicular bodies (MVBs) as defined by VSR proteins and the BP-80 reporter, where the transmembrane domain (TMD) and cytoplasmic tail (CT) sequences of BP-80 are sufficient and specific for correct targeting of the reporter to PVCs. The genome of Arabidopsis (Arabidopsis thaliana) contains seven VSR proteins, but little is known about their individual subcellular localization and function. Here, we study the subcellular localization of the seven Arabidopsis VSR proteins (AtVSR1-7) based on the previously proven hypothesis that the TMD and CT sequences correctly target individual VSR to its final destination in transgenic tobacco BY-2 cells. Toward this goal, we have generated seven chimeric constructs containing signal peptide (sp) linked to green fluorescent protein (GFP) and TMD/CT sequences (sp-GFP-TMD/CT) of the seven individual AtVSR. Transgenic tobacco BY-2 cell lines expressing these seven sp-GFP-TMD-CT fusions all exhibited typical punctate signals colocalizing with VSR proteins by confocal immunofluorescence. In addition, wortmannin caused the GFP-marked prevacuolar organelles to form small vacuoles, and VSR antibodies labeled these enlarged MVBs in transgenic BY-2 cells. Wortmannin also caused VSR-marked PVCs to vacuolate in other cell types, including Arabidopsis, rice (Oryza sativa), pea (Pisum sativum), and mung bean (Vigna radiata). Therefore, the seven AtVSRs are localized to MVBs in tobacco BY-2 cells, and wortmannin-induced vacuolation of PVCs is a general response in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号