首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The potential of the microflora in nutrient solutions to produce cell wall degrading enzymes (CWDE) was investigated by adding glucose or substrates of CWDE, such as chitin, cellulose, curdlan and preparations of fungal mycelia (0, 0.01 and 0.1%, w/v). The results indicate the potential of the microflora in nutrient solutions to produce proteolytic, chitinolytic, cellulolytic as well as β‐1,3‐glucanolytic enzymes. All enzyme complexes were induced by addition of preparations of Fusarium oxysporum f. sp. cyclaminis (Focy) and Pythium ultimum, respectively. In contrast, addition of glucose to nutrient solution resulted in only slight increase of protease and chitinase. No correlation between increased activity of CWDE and survival of Focy was found.  相似文献   

2.
The ubiquitous oomycete Pythium oligandrum is a potential biocontrol agent for use against a wide range of pathogenic fungi and an inducer of plant disease resistance. The ability of P. oligandrum to compete with root pathogens for saprophytic colonization of substrates may be critical for pathogen increase in soil, but other mechanisms, including antibiosis and enzyme production, also may play a role in the antagonistic process. We used transmission electron microscopy and gold cytochemistry to analyze the intercellular interaction between P. oligandrum and Phytophthora parasitica. Growth of P. oligandrum towards Phytophthora cells correlated with changes in the host, including retraction of the plasma membrane and cytoplasmic disorganization. These changes were associated with the deposition onto the inner host cell surface of a cellulose-enriched material. P. oligandrum hyphae could penetrate the thickened host cell wall and the cellulose-enriched material, suggesting that large amounts of cellulolytic enzymes were produced. Labeling of cellulose with gold-complexed exoglucanase showed that the integrity of the cellulose was greatly affected both along the channel of fungal penetration and also at a distance from it. We measured cellulolytic activity of P. oligandrum in substrate-free liquid medium. The enzymes present were almost as effective as those from Trichoderma viride in degrading both carboxymethyl cellulose and Phytophthora wall-bound cellulose. P. oligandrum and its cellulolytic enzymes may be useful for biological control of oomycete pathogens, including Phytophthora and Pythium spp., which are frequently encountered in field and greenhouse production.  相似文献   

3.
Fourteen fungi (primarily representing mycoparasitic and biocontrol fungi) were tested for their ability to grow on and degrade cell walls (CWs) of an oomycete (Pythium ultimum), ascomycete (Fusarium equisetii), and basidiomycete (Rhizoctonia solani), and their hydrolytic enzymes were characterized. Protein was detected in the cultural medium of eleven of the test isolates, and these fungi significantly degraded CWs over the 14-day duration of the experiment. In general, a greater level of CW degradation occurred for F. equisetii and P. ultimum than for R. solani. Fungi that degraded F. equisetii CWs were Coniothyrium minitans, Gliocladium roseum, Myrothecium verrucaria, Talaromyces flavus, and Trichoderma harzianum. Taxa degrading P ultimum CWs included Chaetomium globosum, Coniothyrium minitans, M. verrucaria, Seimatosporium sp., Talaromyces flavus, Trichoderma hamatum, Trichoderma harzianum, and Trichoderma viride. Production of extracellular protein was highly correlated with CW degradation. Considerable variation in the molecular weights of CW-degrading enzymes were detected among the test fungi and the CW substrates in zymogram electrophoresis. Multivariate analysis between CW degradation and hydrolysis of barley beta-glucan (beta1,3- and beta1,4-glucanases), laminarin (beta1,3- and beta1,6-glucanases), carboxymethyl cellulose (endo-beta1,4-glucanases), colloidal chitin (chitinases), and chitosan (chitosanases) was conducted. For F. equisetii CWs, the regression model accounted for 80% of the variability, and carboxymethyl cellulases acting together with beta-glucanases contributed an R2 of 0.52, whereas chitinases and beta-glucanases alone contributed an R2 of 0.11 and 0.12, respectively. Only 61% of the variability observed in the degradation of P. ultimum CWs was explained by the enzyme classes tested, and primarily beta-glucanases (R2 of 0.53) and carboxymethyl cellulases (R2 of 0.08) alone contributed to CW break down. Too few of the test fungi degraded R. solani CWs to perform multivariate analysis effectively. This study identified several fungi that degraded ascomyceteous and oomyceteous, and to a lesser extent, basidiomycetous CWs. An array of enzymes were implicated in CW degradation.  相似文献   

4.
Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes.  相似文献   

5.
Autohydrolysed beech sawdust has been treated with aqueous NaOH solution in a three-stage process to increase the susceptibility of cellulose to cellulolytic enzymes. This process consisted of neutralization of autohydrolysed wood, extraction of lignin and alkali treatment of residual solids with 1.5% aqueous NaOH solution at 135°C for 1 h. The cellulose in the residues was then hydrolysed with Novo (SP 122) and Fusarium sp. 27 cellulases [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4]. The susceptibility of cellulose to cellulases was increased 2.3 to 2.7-fold.  相似文献   

6.
We have isolated three types of cDNAs encoding novel beta1,3-N-acetylglucosaminyltransferases (designated beta3Gn-T2, -T3, and -T4) from human gastric mucosa and the neuroblastoma cell line SK-N-MC. These enzymes are predicted to be type 2 transmembrane proteins of 397, 372, and 378 amino acids, respectively. They share motifs conserved among members of the beta1,3-galactosyltransferase family and a beta1,3-N-acetylglucosaminyltransferase (designated beta3Gn-T1), but show no structural similarity to another type of beta1,3-N-acetylglucosaminyltransferase (iGnT). Each of the enzymes expressed by insect cells as a secreted protein fused to the FLAG peptide showed beta1,3-N-acetylglucosaminyltransferase activity for type 2 oligosaccharides but not beta1,3-galactosyltransferase activity. These enzymes exhibited different substrate specificity. Transfection of Namalwa KJM-1 cells with beta3Gn-T2, -T3, or -T4 cDNA led to an increase in poly-N-acetyllactosamines recognized by an anti-i-antigen antibody or specific lectins. The expression profiles of these beta3Gn-Ts were different among 35 human tissues. beta3Gn-T2 was ubiquitously expressed, whereas expression of beta3Gn-T3 and -T4 was relatively restricted. beta3Gn-T3 was expressed in colon, jejunum, stomach, esophagus, placenta, and trachea. beta3Gn-T4 was mainly expressed in brain. These results have revealed that several beta1,3-N-acetylglucosaminyltransferases form a family with structural similarity to the beta1,3-galactosyltransferase family. Considering the differences in substrate specificity and distribution, each beta1,3-N-acetylglucosaminyltransferase may play different roles.  相似文献   

7.
Abstrfsact The β-1,3(4)-glucanase A (GluA)-encoding gene named gluA was cloned from the genomic library of a marine bacterium Pseudomonas sp. PE2 by expression in Escherichia coli, and the complete DNA sequence was determined. The recombinant enzyme from Pseudomonas sp. PE2 was examined to determine the essential enzymes for degrading Pythium porphyrae cell walls, comparatively using other two recombinant enzymes, chitinase A and β-1,3-glucanase B from the same bacterial strain. GluA most degraded the cell walls among these three enzymes, suggesting that GluA seems to be most important to P. porphyrae cell-wall-degrading activity. The deduced GluA is a modular enzyme composed of an N-terminal signal peptide, the tandem-duplicated carbohydrate-binding module family 6 (CBMGluA-1 and CBMGluA-2), and a glycoside hydrolase family 16 catalytic domain. Deletion analysis clearly indicated that GluA lacking CBMGluA-1 and CBMGluA-2 does not bind to Avicel and xylan. These results suggest that the tandem-repeated CBM of GluA may play a key role in the binding of Avicel and xylan as well as β-1,3- and β-1,3;1,4-glucans and is very important to bind to insoluble polysaccharides.  相似文献   

8.
This study was devoted to increasing the production of fungal cell wall degrading enzymes by Bacillus subtilis JF419701 to enhance its efficiency in the biological control process. In dual culture, B. subtilis JF419701 showed the highest antagonistic effect of the 256 bacterial strains tested against six soil-borne pathogens, Alternaria alternata, Exserohilum rostratum, Fusarium oxysporum, Macrophomina phaseolina, Pythium ultimum and Rhizoctonia solani. The production potentiality of the enzymes α-1,3-glucanase, β-1,3-glucanase, chitinase and protease by B. subtilis JF419701 was studied in vitro. Results proved that the maximum production of enzymes by this bacterium was achieved after a two-day incubation period at a slightly alkaline pH (8). The addition of colloidal chitin or S-glucan to the growth media enhanced the production of all the enzymes except protease, which was stimulated by casein. This study therefore recommends that to obtain an efficient and strong bioagent culture of B. subtilis JF419701, it is necessary to grow this micro-organism on a specific medium containing either chitin or its derivatives at pH 8 for two days.  相似文献   

9.
Ethylene induced chitinase (EC 3.2.1.14) and -1,3-glucanase (EC 3.2.1.29) to a similar extent in primary leaves of bean seedlings (Phaseolus vulgaris cv. Saxa). Both enzymes were purified from ethylene-treated leaves, and monospecific antibodies were raised aginst them. Ethylene treatments strongly increased the amount of immunore-active chitinase and -1,3-glucanase. Ethylene enhanced synthesis of chitinase in vivo, as tested by immunoprecipitation after pulse-labelling with [35S]methionine. RNA was isolated from bean leaves and translated in a rabbit reticulocyte lysate system in vitro. The chitinase and the -1,3-glucanase antiserum each precipitated a single polypeptide from the translation products. The precipitated polypeptides were 1500 and 4000 daltons larger, respectively, than native chitinase and native -1,3-glucanase, indicating that the two enzymes were synthesized as precursors in vitro. The translatable mRNAs for both enzymes increased at least tenfold within 2 h in response to a treatment with ethylene. When ethylene was withdrawn after 8 h of incubation, the translatable mRNAs for both enzymes decreased somewhat more slowly, reaching the basal level about 25 h later. In all cases, there was a close correlation between the levels of translatable mRNA for chitinase and -1,3-glucanase. A putative -1,3-glucanase cDNA clone, pCH16, was isolated by hybrid-selected translation. The amount of -1,3-glucanase mRNA, as measured by RNA blot analysis using pCH16 as a probe, increased rapidly in response to ethylene and decreased again after withdrawal of ethylene, indicating that the amount of hybridizable RNA and of translatable mRNA for -1,3-glucanase were correlated. In conclusion, the results indicate that chitinase and -1,3-glucanase are regulated co-ordinately at the level of mRNA.Abbreviations poly(A)+ RNA polyadenylated RNA - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis - TCA trichloroacetic acid  相似文献   

10.
以川西高山林线交错带3种典型植被类型(针叶林、高山灌丛、高山草甸)下两个层次(LF层: 新鲜凋落物层和发酵层; H层: 腐殖质层)的凋落物为研究对象, 分别模拟凋落物分解的前期和后期阶段, 对凋落物分解过程中的纤维素酶活性及凋落物质量进行了研究。结果表明, 凋落物分解前期的纤维素酶活性和纤维素含量均显著高于分解后期, 但植被类型对LF和H层的纤维素含量的影响都不显著。双因素方差分析结果表明, 凋落物分解阶段对纤维素酶活性和纤维素含量的影响比植被类型对纤维素酶活性和纤维素含量的影响更大。不同种类的纤维素酶活性在分解前期和分解后期受到不同因子的限制。凋落物分解前期, 微晶纤维素酶和β-葡萄糖苷酶活性可能受N、P含量的限制, 而羧甲基纤维素酶主要受底物纤维素含量控制; 凋落物分解后期, 羧甲基纤维素酶和β-葡萄糖苷酶可能受C、N含量的限制。生态化学计量学的理论预测, 底物质量比C:N > 27或C:P > 186时会限制微生物生长, 因此判断高山林线交错带凋落物微生物生物量和纤维素酶活性同时受到底物N、P的限制, 尤其是高山草甸上微生物生物量在凋落物分解前期受到底物N、P的限制比分解后期更显著, 这充分说明了底物质量调控着凋落物分解过程中的纤维素酶活性和微生物生物量。  相似文献   

11.
The ubiquitous oomycete Pythium oligandrum is a potential biocontrol agent for use against a wide range of pathogenic fungi and an inducer of plant disease resistance. The ability of P. oligandrum to compete with root pathogens for saprophytic colonization of substrates may be critical for pathogen increase in soil, but other mechanisms, including antibiosis and enzyme production, also may play a role in the antagonistic process. We used transmission electron microscopy and gold cytochemistry to analyze the intercellular interaction between P. oligandrum and Phytophthora parasitica. Growth of P. oligandrum towards Phytophthora cells correlated with changes in the host, including retraction of the plasma membrane and cytoplasmic disorganization. These changes were associated with the deposition onto the inner host cell surface of a cellulose-enriched material. P. oligandrum hyphae could penetrate the thickened host cell wall and the cellulose-enriched material, suggesting that large amounts of cellulolytic enzymes were produced. Labeling of cellulose with gold-complexed exoglucanase showed that the integrity of the cellulose was greatly affected both along the channel of fungal penetration and also at a distance from it. We measured cellulolytic activity of P. oligandrum in substrate-free liquid medium. The enzymes present were almost as effective as those from Trichoderma viride in degrading both carboxymethyl cellulose and Phytophthora wall-bound cellulose. P. oligandrum and its cellulolytic enzymes may be useful for biological control of oomycete pathogens, including Phytophthora and Pythium spp., which are frequently encountered in field and greenhouse production.  相似文献   

12.
Four anaerobic fungi were grown on filter paper cellulose and monitored over a 7–8 days period for substrate utilisation, fermentation products, and secretion of cellulolytic and xylanolytic enzymes. Two of the fungi (N1 and N2) were Neocallimastix species isolated from a ruminant (sheep) and the other two fungi were Piromyces species (E2 and R1) isolated from an Indian Elephant and an Indian Rhinoceros, respectively. The tested anaerobic fungi degraded the filter paper cellulose almost completely and estimated cellulose digestion rates were 0.25, 0.13, 0.21 and 0.18 g · 1-1 · h-1 for strains E2, N1, N2, R1, respectively. All strains secreted cellulolytic and xylanolytic enzymes, including endoglucanase, exoglucanase, -glucosidase and xylanase. Strain E2 secreted the highest levels of enzymes in a relatively short time. The product formation on avicel by enzymes secreted by the four fungi was studied. Both in the presence and absence of glucurono-1,5--lactone, a specific inhibitor of -glucosidase, mainly glucose was formed but no cellobiose. Therefore the exoglucanase secreted by the four fungi is probably a glucohydrolase.  相似文献   

13.
Two beta-1,3-glucanases which are rapidly induced in the incompatible interaction between bean (cv. Processor) and Colletotrichum lindemuthianum race beta were purified to homogeneity. Characterization of the two enzymes, GE1 and GE2, showed that they both had a basic isolectric point and a similar molecular weight (36,500 for GE1 and 36,000 for GE2), but differed in their pH optimum, thermal stability, and specific activity. GE2 was present in higher amounts but was shown to be less active than GE1 against laminarin and fungal cell walls isolated from race beta of the fungus. Both enzymes were specific for beta-1,3 linkages and showed a strict endolytic mode of action. Further characterization of GE2 was achieved by amino acid sequence analysis of tryptic peptides; the degree of homology shared with other basic beta-1,3-glucanases depended on the plant source. A time-course study showed that GE1 and GE2 were increased during infection. They were also induced by fungal elicitors, thereby indicating that they originate from the host.  相似文献   

14.
Plants respond to an attack by potentially pathogenic organisms and to the plant stress hormone ethylene with an increased synthesis of hydrolases such as chitinase and [beta]-1,3-glucanase. We have studied the subcellular localization of these two enzymes in ethylene-treated bean leaves by immunogold cytochemistry and by biochemical fractionation techniques. Our micrographs indicate that chitinase and [beta]-1,3-glucanase accumulate in the vacuole of ethylene-treated leaf cells. Within the vacuole label was found predominantly over ethylene-induced electron dense protein aggregates. A second, minor site of accumulation of [beta]-1,3-glucanase was the cell wall, where label was present nearly exclusively over the middle lamella surrounding intercellular air spaces. Both kinds of antibodies labeled Golgi cisternae of ethylene-treated tissue, suggesting that the newly synthesized chitinase and [beta]-1,3-glucanase are processed in the Golgi apparatus. Biochemical fractionation studies confirmed the accumulation in high concentrations of both chitinase and [beta]-1,3-glucanase in isolated vacuoles, and demonstrated that only [beta]-1,3-glucanase, but not chitinase, was present in intercellular washing fluids collected from ethylene-treated leaves. Based on these results and earlier studies, we propose a model in which the vacuole-localized chitinase and [beta]-1,3-glucanase are used as a last line of defense to be released when the attacked host cells lyse. The cell wall-localized [beta]-1,3-glucanase, on the other hand, would be involved in recognition processes, releasing defense activating signaling molecules from the walls of invading pathogens.  相似文献   

15.
A collection of about 200 actinomycete strains was screened for the ability to grow on fragmented Phytophthora mycelium and to produce metabolites that inhibit Phytophthora growth. Thirteen strains were selected, and all produced (beta)-1,3-, (beta)-1,4-, and (beta)-1,6-glucanases. These enzymes could hydrolyze glucans from Phytophthora cell walls and cause lysis of Phytophthora cells. These enzymes also degraded other glucan substrates, such as cellulose, laminarin, pustulan, and yeast cell walls. Eleven strains significantly reduced the root rot index when inoculated on raspberry plantlets.  相似文献   

16.
Li L  Brown RM 《Plant physiology》1993,101(4):1143-1148
The regulation and kinetic properties of cellulose synthase as well as [beta]-1,3-glucan synthase have been studied. The cellulose was detected using acetic/nitric acid insolubility as an indicator of cellulose (this product contained only [beta]-1,4-linked glucans; K. Okuda, L. Li, K. Kudlicka, S. Kuga, R.M. Brown, Jr. [1993] Plant Physiol 101: 1131-1142). These studies reveal that (a) [beta]-1,3-glucan synthesis is enhanced up to 31-fold by cellobiose with a Ka of 1.16 mM; (b) cellulose synthesis is increased 12-fold by a combination of cellobiose (Ka = 3.26 mM) and cyclic-3[prime]:5[prime]-GMP (Ka = 100 [mu]M); (c) the common components in the reaction mixture required by both enzymes are cellobiose, calcium, and digitonin; (d) cellulose synthase has an essential requirement for magnesium (Ka = 0.89 mM); (e) cellulose synthase also requires a low concentration of calcium (Ka = 90 [mu]M); (f) the optimal pH for cellulose synthase (7.6-8.0) is slightly higher than that for [beta]-1,3-glucan synthase (7.2-7.6); (g) the Km for UGP-Glc for cotton (Gossypium hirsutum) cellulose synthase is 0.40 mM; (h) the Km for UDP-Glc for for [beta]-1,3-glucan synthase is 0.43 mM.  相似文献   

17.
Summary The cellulolytic enzyme complex was studied during the diauxic growth of Cellulomonas sp.IIbc on alkali-pretreated sugar cane bagasse pith. In the first growth phase only a low cell-bound aryl--glucosidase activity was detected. Formation of extracellular and bound (cell-, bagasse-) CM- and FP-cellulases occurred later, i.e. at the beginning and during the second growth phase. The levels of all cellulolytic enzymes, mainly bound ones, increased with the growth of cells. At the end of the linear growth phase almost all bound cellulolytic enzymes, except for cell-bound aryl--glucosidase, are released to the medium as an extracellular complex. A considerable level of the intracellular aryl--glucosidase activity is still present at the end of the fermentation.  相似文献   

18.
In contrast to wild-type F1 adenosine triphosphatase, the beta subunits of soluble ATPase from Escherichia coli mutant strains AN120 (uncA401) and AN939 (uncD412) were not labeled by the fluorescent thiol-specific reagents 5-iodoacetamidofluorescein, 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid or 4-[N-(iodoacetoxy)ethyl-N-methyl]amino-7-nitrobenzo-2-oxa-1,3-diazole. The mutation in the alpha subunit (uncA401) of F1 ATPase thus influences the accessibility of the single cysteinyl residue in the beta subunit. Following reaction of ATPase with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole or N,N'-dicyclohexylcarbodiimide, the alpha and beta subunits of the uncA401, but not of the uncD412 mutant F1 ATPase were intensely labeled by a fluorescent thiol reagent. The mutation in the beta subunit (uncD412) thus influences the accessibility of the cysteinyl residues in the alpha subunit. In other work [Stan-Lotter, H. and Bragg, P.D. (1986) Arch. Biochem. Biophys. 248] we have shown that 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and 2-(4'-iodoacetamidoanilino)naphthalene-6-sulfonic acid react with a different beta subunit from that labeled by N,N'-dicyclohexylcarbodiimide. This asymmetry with respect to modification by 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole and N,N'-dicyclohexylcarbodiimide was seen in both mutant enzymes. In addition, the modification of one beta subunit of the uncA401 F1 ATPase induced the previously unreactive sulfhydryl group of another beta subunit to react with 2-(4'-iodoacetamidoanilino-naphthalene-6-sulfonic acid. These results provide evidence for at least three types of conformational interactions of the major subunits of F1 ATPase: from alpha to beta, from beta to alpha, and from beta to beta. As in wild-type ATPase, labeling of membrane-bound unc mutant ATPase by a fluorescent thiol reagent modified the alpha subunits. This suggests that a conformational change of yet a different type occurs when the enzyme binds to the membrane.  相似文献   

19.
In plants, the only known outer-chain elongation of complex N-glycans is the formation of Lewis a [Fuc alpha1-4(Gal beta1-3)GlcNAc-R] structures. This process involves the sequential attachment of beta1,3-galactose and alpha1,4-fucose residues by beta1,3-galactosyltransferase and alpha1,4-fucosyltransferase. However, the exact mechanism underlying the formation of Lewis a epitopes in plants is poorly understood, largely because one of the involved enzymes, beta1,3-galactosyltransferase, has not yet been identified and characterized. Here, we report the identification of an Arabidopsis thaliana beta1,3-galactosyltransferase involved in the biosynthesis of the Lewis a epitope using an expression cloning strategy. Overexpression of various candidates led to the identification of a single gene (named GALACTOSYLTRANSFERASE1 [GALT1]) that increased the originally very low Lewis a epitope levels in planta. Recombinant GALT1 protein produced in insect cells was capable of transferring beta1,3-linked galactose residues to various N-glycan acceptor substrates, and subsequent treatment of the reaction products with alpha1,4-fucosyltransferase resulted in the generation of Lewis a structures. Furthermore, transgenic Arabidopsis plants lacking a functional GALT1 mRNA did not show any detectable amounts of Lewis a epitopes on endogenous glycoproteins. Taken together, our results demonstrate that GALT1 is both sufficient and essential for the addition of beta1,3-linked galactose residues to N-glycans and thus is required for the biosynthesis of Lewis a structures in Arabidopsis. Moreover, cell biological characterization of a transiently expressed GALT1-fluorescent protein fusion using confocal laser scanning microscopy revealed the exclusive location of GALT1 within the Golgi apparatus, which is in good agreement with the proposed physiological action of the enzyme.  相似文献   

20.
In yeast and other fungi, cell division, cell shape, and growth depend on the coordinated synthesis and degradation of cell wall polymers. We have developed a reliable and efficient micro method to determine Saccharomyces cerevisiae cell wall composition that distinguishes between beta1,3- and beta1,6-glucan. The method is based on the sequential treatment of cell walls with specific hydrolytic enzymes followed by dialysis. The low molecular weight (MW) products thus separated account for each particular cell wall polymer. The method can be applied to as little as 50-100 mg (wet wt) of radioactively labeled cells. A combination of chitinase and recombinant beta-1,3-glucanase is initially used, releasing all of the chitin and 60-65% of the beta1,3-glucan from the cell walls. Next, recombinant endo-beta-1,6-glucanase from Trichoderma harzianum is utilized to release all the beta-1,6-glucan present in the wall. The chromatographic pattern of endoglucanase digested beta-1,6-glucan provides a characteristic "fingerprint" of beta-1,6-glucan and the fine structure of the oligosaccharides in this pattern was determined by 1H NMR and electrospray ionization mass spectroscopy. The final enzymatic step uses laminarinase and beta-glucosidase to release the remaining beta-1,3-glucan. The cell wall mannan remains as a high MW fraction at the end of the fractionation procedure. Good sensitivity and correlation with cell wall composition determined by traditional methods were observed for wild-type and several cell wall mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号