首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
We studied the ultrastructure of Torulopsis sphaerica yeast cells irradiated with He-Ne laser (lambda = 632.8 nm, dose--460 J/m2) and then cultured for 6 h in the nutrient with 1% glucose by aeration. The length of membranes of endoplasmic reticulum (ER) and the number of its associations with mitochondria (M) and plasma membrane (PM) were measured on ultrathin sections. A distance of less than 50 nm between heterogeneous membranes was considered as an "association". The cells from irradiated cultures are characterized by the following features: 1) the length of cortical ER membranes in relation to cellular perimeter, and the length of perinuclear ER membranes in relation to nuclear perimeter increase, resp., by 21 and 79%; 2) the number of ER-PM associations per cellular section, and that per unit of PM length increase, resp., by 26 and 41%; 3) the number of ER-M association in relation to the total mitochondrial perimeter, and to perimitochondrial ER increase by 80 and 87%, resp. The latter may be associated with Ca2+ uptake by mitochondria associated with ER, which results in activation of respiration and ATP production.  相似文献   

2.
The data on the aftereffect of He-Ne laser light (λ = 632.8 nm) on mitochondria of yeasts in late log phase were reviewed. The quantitative analysis of the ultrathin cell sections demonstrated a nonuniform thickness of the giant branched mitochondria typical for budding yeasts. Exposure to a dose of 460 J/m2 (accelerating cell proliferation and activating respiratory chain enzymes, cytochrome c oxidase and NADH dehydrogenase), changed the macrostructure of the giant mitochondria—much of the narrow regions of the mitochondrial tube with profiles ≤0.06 μm2 were expanded (while no signs of organelle damage were observed). Such mitochondria are characterized by increased relative surface area of the cristae, which can be due to the activation of their respiration and ATP synthesis. The number of associations between mitochondria and endoplasmic reticulum increased in irradiated cells in early log phase, which reflects the increased capacity of mitochondria to uptake Ca2+. Altered giant mitochondria configuration can increase the efficiency of both energy transfer and Ca2+ propagation through the cytoplasm. __________ Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 6, 2005, pp. 672–683. Original Russian Text Copyright ? 2005 by Manteifel, Karu.  相似文献   

3.
目的:研究He-Ne激光照射鼠巨噬细胞对线粒体跨膜电势的影响,及其与激光剂量的关系。方法:用亲脂性阳离子荧光染料Rhodamine123对鼠巨噬细胞线粒体作荧光标记,以不同的激光剂量照射,采用图像分析系统(IAS)和荧光显微镜观察线粒体跨膜电势荧光强度的变化。结果:低功率He-Ne激光照射5,10,15min,激光剂量分别为0.649,1.388和2.082J/cm^2,巨噬细胞线粒体跨膜电势荧光  相似文献   

4.
The influence of He-Ne laser radiation (632.8 nm, 56 J/m2, t = 10 s) and phytohaemagglutinin (PHA, 2 micrograms/ml) on chromatin structure in human lymphocytes was studied by electron microscopy using ultrathin cell sections. Morphometric analysis of extranuclear condensed chromatin masses was performed 1 h after the irradiation or after the beginning of PHA treatment. In the irradiated cells the following insignificant changes were revealed: decrease in the relative area of the nucleoplasmic chromatin, increase in the relative area of decondensation zones as well as increase in the number of clumps of nucleoplasmic chromatin and relative length at their boundary with nucleoplasma. The tendency of these morphological changes may be interpreted as functional activation of extranucleolar RNA synthesis in response to irradiation by red laser light. Action of PHA results in significant changes of the surfaces of chromatin clumps, namely increase in relative length of nucleoplasmic chromatin boundary and decrease in relative length of perimembranous chromatin boundary with nucleoplasma as well as some less expressed delamination of the chromatin masses from the nuclear membrane. These essential changes may reflect chromatin activation by proliferative stimulus. Peculiarities of the ultrastructural reorganisation in the condensed chromatin after irradiation and PHA-treatment probably reflect the differences in the processes of gene activation caused by the two agents.  相似文献   

5.
Abstract Mitochondria are involved in apoptosis of mammalian cells and even single‐cell organisms, but mitochondria are not required in apoptosis in cultured Drosophila cells such as S2 and BG2 cell lines. It is not very clear whether mitochondria are involved in apoptosis in other insect cells such as lepidopteran cell lines. Thus, we determined to elucidate the role of mitochondria in apoptosis induced by ultraviolet radiation in Spodoptera litura (Lepidoptera: Noctuidae) cell line (SL‐ZSU‐1). The Western blot results suggested that cytochrome c in the ultraviolet‐treated SL‐1 cells was released from the mitochondria to cytosol as early as 4 h after the induction of ultraviolet radiation and increased in the cytosolic fractions in a time‐dependent manner. Flow cytometric analysis of mitochondrial membrane potential (ΔΨm) of SL‐ZSU‐1 cell treated with ultraviolet‐C (UV‐C) light indicated the decrease in mitochondrial membrane potential was dependent on the times of ultraviolet treatment. Both of them are different from apoptosis in cultured Drosophila melanogaster cell lines (S2 and BG2) and it appears evident mitochondria are involved in apoptosis of the studied lepidopteran cells.  相似文献   

6.
研究不同功率的低强度He-Ne激光对正常人体红细胞流变学特性影响。以正常人体红细胞为研究对象,测量了低强度He-Ne激光在不同照射时间、不同功率条件下红细胞的变形、取向、膜流动性、膜的微粘度和渗透脆性的变化情况。结果表明:照射后红细胞的变形性和膜流动性增强、渗透脆性下降。照射对红细胞流变学特性影响显著,其中激光能量为0.24 J、照射血样为2 mL时取得的照射效果最佳。  相似文献   

7.
8.
Recent studies have shown that reduction in mitochondrial membrane potential (ΔΨm) and generation of reactive oxygen species are early events in apoptosis. In this study, we present two different models of apoptotic cell death, Chinese hamster ovary (CHO) cells treated with aphidicolin and dexamethasone-treated 2B4 T-cell hybridoma cells, which display opposing mitochondrial changes. CHO cells arrested at G1/S with aphidicolin have a progressive increase in mitochondria mass and number, assessed by flow cytometry and fluorescent microscopy with mitochondria-specific probes. The increase in mitochondrial mass was not accompanied by a gain in net cellular mitochondrial membrane potential, consistent with an accumulation of relatively depolarized mitochondria. Fluorescent microscopy demonstrated an increased content of low ΔΨmmitochondria in aphidicolin-treated CHO cells, but high ΔΨmmitochondria were also present and remained stable in number. Mitochondrial mass correlated with decreased clonogenicity of aphidicolin-treated CHO cells. Cycloheximide prevented both the proliferation of mitochondria and subsequent cell death. In contrast, dexamethasone treatment of 2B4 T-cell hybridoma cells caused a decrease in ΔΨmwithout mitochondrial proliferation. Cycloheximide and Bcl-2 overexpression inhibited the loss of ΔΨm, as well as apoptosis. In both models, cell death was associated with a decrease in mitochondrial potential relative to mitochondrial mass, suggesting that an accumulation of damaged or dysfunctional mitochondria had occurred.  相似文献   

9.
Bcl-2 family proteins regulate apoptosis at the level of mitochondria. To examine the mechanism of Bcl-2 function, we investigated the effects of the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) on two hematopoietic cell lines and Bcl-2 overexpressing transfectants. CCCP directly interferes with mitochondrial function and induces apoptosis. We show that Bcl-2 inhibits apoptosis and that the antiapoptotic effect of Bcl-2 takes place upstream of caspase activation and nuclear changes associated with apoptosis, since these were markedly inhibited in cells overexpressing Bcl-2. Bcl-2 does not prevent the decrease in mitochondrial membrane potential nor the alterations in cellular ATP content induced by CCCP in FL5.12 and Jurkat cells. A higher number of mitochondria was observed in untreated Bcl-2 transfected cells compared to parental cells, as shown by electron microscopy. Exposure to CCCP induced a dramatic decrease in the number of mitochondria and severely disrupted mitochondrial ultrastructure, with apparent swelling and loss of cristae in parental cells. Bcl-2 clearly diminished the disruption of mitochondrial structure and preserved a higher number of mitochondria. These data suggest that CCCP induces apoptosis by structural disruption of mitochondria and that Bcl-2 prevents apoptosis and mitochondrial degeneration by preserving mitochondrial integrity.  相似文献   

10.
To find out the mechanism of modulating the deformability of erythrocytes with low intensity He-Ne laser action, we studied the effect of low intensity He-Ne laser on the ultrastructure of human erythrocyte membrane. Erythrocytes were treated with free radicals from a Fenton reaction system before exposing them to low intensity He-Ne laser. The ultrastructure of damaged erythrocyte membrane was examined by atomic force microscopy. The results showed that the erythrocyte membrane became very rough and the molecules on the surface of the membrane congregated into particles of different magnitudes sizes after treating with free radicals. Comparing the degree of congregation of the molecular particles in the non-irradiated group and the He-Ne laser irradiated (9 mW and 18 mW) group, we found the average size of molecular particles in the laser irradiated group was smaller than that in the non-irradiated group, indicating that the low intensity laser had repairing function to the damage of erythrocyte membrane produced by the free radicals.  相似文献   

11.
The contractile behavior and surface morphology of cultured neonatal rat heart cells were examined by phase contrast and scanning electron microscopy (SEM) following laser irradiation of single mitochondria. Irradiation always resulted in damage to the target mitochondrion (as determined by phase microscopy) and was associated with one of three contractile states, each of which correlated with a specific surface morphology over the irradiated mitochondrion. The results demonstrate that: (1) changes in the contractile activity of the cell correlate directly with morphological changes in the target organelle and in the membrane overlying the target organelle; (2) when the contractile activity of the cell remains unchanged, the morphology of the membrane overlying the target organelle appears normal via SEM even though the organelle is visibly damaged as judged by phase contrast microscopy; (3) the correlation between contractile behavior and surface morphology was the same regardless of which cell surface the laser beam passed through when entering the cell (i.e., through the cell surface directly apposed to the glass or through the free cell surface directly exposed to the medium); (4) the mitochondrial lesions could be compared to lesions made in dried red blood cells irradiated from either surface. (Again the lesions appeared identical regardless of the cell surface through which the laser beam entered.) These observations suggest that laser damage is produced equally in all directions from the focal point.  相似文献   

12.
Mitochondrial structure in yeast cells under various physiological conditions has been studied by high voltage electron microscopy of sections that are 0-5 to 2-0 mum thick. Such thick sections of the yeast Candida utilis had a small number of long, branched tubular mitochondria per cell. The mitochondria extended into cell buds and unseparated daughter cells. It was apparent from parallel studies with thin sections that most of the rounded mitochondrial profiles viewed in thin sections should not be interpreted as being numerous small individual mitochondria. Attempts to study thick sections of the yeasts Saccharomyces cerevisiae and Schizossaccharomyces pombe were frustrated by poor contrast.  相似文献   

13.
Ru Y  Yin L  Sun H  Yin S  Pan Q  Wei H  Wu L  Liu S 《Analytical biochemistry》2012,421(1):219-226
Mitochondrial preparation is a key technique in the study of mitochondria. Growing evidence has demonstrated that mitochondrial proteins are tissue or cell type dependent. Locating the proteins in the global presence of mitochondrial membranes is a primary consideration in adopting antibodies for affinity enrichment of mitochondria on a micro scale. Two proteins located on the outer membrane of mitochondria, cytochrome b5 type B (CYB5B) and synaptojanin-2-binding protein (SYNJ2BP), were selected as candidates based on a survey of databases and the literature. The polyclonal antibodies against the truncated CYB5B and SYNJ2BP exhibited specific recognition to mitochondria and wider sensitivity to several tested mouse tissues and cell lines, whereas the antibody 22-kDa translocase of the outer mitochondrial membrane (TOM22) nearly missed detection of mitochondria in the liver and responded minimally to mitochondria from H9C2 and L-02 cells. Through the affinity enrichment for cellular mitochondria using magnetic beads coated with anti-CYB5B or anti-SYNJ2BP, we found that the anti-CYB5B beads could enrich mitochondria more efficiently even on a scale of 10,000 cultured cells. For the integrity and protein components, the enriched mitochondria on anti-CYB5B were carefully examined and were accepted in further functional study. We propose that an anti-CYB5B immunomagnetic approach is feasible in the micropreparation of mitochondria from cultured cells.  相似文献   

14.
以红树林植物海马齿为材料,将生长一致的海马齿水培苗放到含有不同浓度Hg2+的营养液中进行Hg2+胁迫,用透射电镜观察海马齿叶肉细胞超微结构对不同浓度Hg2+胁迫的响应,以明确重金属汞对海马齿叶肉细胞超微结构的影响,探讨海马齿耐汞机制。结果表明:重金属汞能造成海马齿叶肉细胞不同程度的伤害,主要表现为对叶肉细胞中的叶绿体、线粒体、细胞核以及膜系统的伤害。随着Hg2+浓度不断升高,其叶绿体数目不断减少,形状由船型变成长形以及出现一些巨型叶绿体,类囊体系统受到伤害、基粒片层变得模糊不清。线粒体数目由于Hg2+浓度的不同而不同,形状由棒状变成圆形及椭圆形,线粒体双层膜结构与嵴变得模糊不清。细胞核也受到不同程度的伤害,核仁由一个变成多个,最后消失;同时细胞膜也受到伤害,主要表现为,不断的向胞内形成膜突起再形成空泡。最后在高浓度Hg2+胁迫下,随着叶肉细胞内细胞器的不断减少,最终造成细胞解体死亡。  相似文献   

15.
An ultrastructural and morphometric study was performed on mitochondria of euthermic, hibernating and arousing hazel dormice (Muscardinus avellanarius), in order to investigate possible modifications during the seasonal cycle. Hepatocytes, pancreatic acinar cells and brown adipocytes were considered. Our results demonstrated that: (1) the general morphology of mitochondria of all cell types shows slight modifications during the seasonal cycle; (2) mitochondrial size and inner membrane length significantly increase from euthermia to hibernation and decrease upon arousal in all cell types; (3) mitochondrial matrix granules drastically increase in number during hibernation and decrease upon arousal in hepatocytes and pancreatic acinar cells, whereas they do not change in brown adipocytes. These structural modifications are probably related to the changes in cellular energy needs during the euthermia-hibernation-arousal cycle.  相似文献   

16.
By means of a previously described method, viable pure tubules of the nephron were isolated in high yield from the outer cortex of the near-term foetal bovine kidney. The tubular suspension obtained was constituted almost exclusively of proximal segments (about 95%), whose cells were dispersed and grown as confluent primary cultures. The cultured proximal cells were shown to maintain in vitro, on glass or plastic surfaces, the same orientation as on the tubular basement membrane in vivo, with interdigitations extending from the base of the cells and along their full height. Numerous mitochondria and the typical cytoplasmic bodies of the proximal cell were retained in cells grown in vitro. A flagellum was seen in every cultured cell and was shown to be present in the proximal cell in vivo. There is a progressive change, in vitro, of the microvilli of the brush border, from a close-packed to a sparse distribution and to a decrease in height and a reduction in number. This in vitro regression to an earlier embryonic state was correlated with the ability of the proximal cells to synthesize in vitro an alpha-fetoprotein and with the loss in vitro of histiospecific antigen synthesis, confined in vivo to the brush border area. The confluent proximal cells became filled with microfilaments and microtubules, the significance of which is discussed.  相似文献   

17.
The effects of ionizing radiation, used in post-harvest treatment of fruit and vegetables. were investigated on cultured apple cells ( Pyrus malus L. cv. Royal Red) on a short-term period. Irradiation (2 kGy) induced an increase of passive ion effluxes from cells and a decrease of cell capacity to regulate external pH. These alterations are likely due to effects on plasma membrane structure and function and were further investigated by studying the effects of irradiation on plasma membrane H+-ATPase activity. Plasma membrane-enriched vesicles were prepared and the H+-ATPase activity was characterized. Irradiation of the vesicles induced a dose dependent inhibition of H+-ATPase activity. The loss of enzyme activity was immediate, even at low doses (0.5 kGy), and was not reversed by the addition of 2m M dithiothreitol. This inhibition may be the result of an irreversible oxidation of enzyme sulfhydryl moieties and/or the result of changes induced within the lipid bilayer affecting the membrane-enzyme interactions. Further analysis of the H+-ATPase activity was carried out on vesicles obtained from irradiated cells confirming the previous results. In vivo recovery of activity was not observed within 5 h following the treatment, thus explaining the decrease of cell capacity to regulate external pH.
This rapid irreversible inhibition of the plasma membrane H+-ATPase must be considered as one of the most important primary biochemical events occurring in irradiated plant material.  相似文献   

18.
In Chlamydomonas reinhardtii P. A. Dangeard, mitochondrial morphology has been observed during asexual cell division cycle, gamete and zygote formation, zygote maturation, and meiotic stages. However, the chronological transition of mitochondrial morphology after the stationary phase of vegetative growth, defined as the poststationary phase, remains unknown. Here, we examined the mitochondrial morphology in cells cultured for 4 months on agar plates to study mitochondrial dynamics in the poststationary phase. Fluorescence microscopy showed that the intricate thread‐like structure of mitochondria gradually changed into a granular structure via fragmentation after the stationary phase in cultures of about 1 week of age. The number of mitochondrial nucleoids decreased from about 30 per cell at 1 week to about five per cell after 4 months of culture. The mitochondrial oxygen consumption decreased exponentially, but the mitochondria retained their membrane potential. The total quantity of mitochondrial DNA (mtDNA) of cells at 4 months decreased to 20% of that at 1 week. However, the mitochondrial genomic DNA length was unchanged, as intermediate lengths were not detected. In cells in which the total mtDNA amount was reduced artificially to 16% after treatment with 5‐fluoro‐2‐deoxyuridine (FdUrd) for 1 week, the mitochondria remained as thread‐like structures. The oxygen consumption rate of these cells corresponded to that of untreated cells at 1 week of culture. This suggests that a decrease in mtDNA does not directly induce the fragmentation of mitochondria. The results suggest that during the late poststationary phase, mitochondria converge to a minimum unit of a granular structure with a mitochondrial nucleoid.  相似文献   

19.
It is shown that the 12-hour treatment of cell with actinomycin D (AMD) in the concentration of 0.05 microgram/ml disturbs a correlation between the morphological cycle of mitochondria and phases of the mitotic cell cycle which is characteristic of intact cells. An increase in the total number of mitochondria independent of phase is observed in all the cells in comparison with intact cells. At the same time a decrease in the amount of branched organellae and appearance of giant mitochondria are discovered. All mitochondria are in the condense form. These changes, perhaps, are a result of the inhibition of the rRNA synthesis in the nucleus and of the protein synthesis in the cell found with it by AMD. The possibility of the immediate interaction of AMD with membrane components of the cell, which induces changes in the ion concentrations and peroxidation of the membrane lipids is not excluded.  相似文献   

20.
In order to gain insights into the mechanism of phototoxicity of the neuroleptic drugs fluphenazine, perphenazine and thioridazine in cultured cells, studies were performed with murine 3T3 fibroblasts, aimed at identifying some cellular targets responsible for photoinduced cell death and possible cytotoxic reactive species involved in the photosensitization process. 3T3 fibroblasts incubated with 5 microM drugs and irradiated with UVA light (up to 8 J/cm2) underwent cell death, the extent of which depended on light dose. Of the three drugs, fluphenazine exhibited the highest phototoxicity and 100% cell death was achieved with a light dose of 5 J/cm2. Superoxide dismutase and alpha-tocopherol exerted a dose-dependent protective effect against drug phototoxicity, whereas N-acetylcysteine failed to do so. These findings indicate that superoxide anion and other free radical intermediates, generated in lipophilic cellular environments, play a role in photoinduced toxicity. Phototreatment of drug-loaded cells induces release of the cytosolic enzyme lactate dehydrogenase and causes loss of activity of mitochondrial NADH dehydrogenase, indicating that plasma membrane and mitochondria are among the targets of the phototoxicity of these drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号