首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.  相似文献   

2.
3.
The present study investigated the role of selenium in the regulation of pancreatic beta-cell function. Utilising the mouse beta-cell line Min6, we have shown that selenium specifically upregulates Ipf1 (insulin promoter factor 1) gene expression, activating the -2715 to -1960 section of the Ipf1 gene promoter. Selenium increased both Ipf1 and insulin mRNA levels in Min6 cells and stimulated increases in insulin content and insulin secretion in isolated primary rat islets of Langerhans. These data are the first to implicate selenium in the regulation of specific beta-cell target genes and suggest that selenium potentially promotes an overall improvement in islet function.  相似文献   

4.
TGF-βi is a secreted protein and is capable of binding to both extracellular matrix (ECM) and cells. It thus acts as a bifunctional molecule enhancing ECM and cell interactions, a lack of which results in dysfunction of many cell types. In this study, we investigated the role of TGF-βi in the function and survival of islets. Based on DNA microarray followed by quantitative PCR confirmation, TGFβi gene showed drastic increase in expression in islets after culture. We demonstrated that recombinant TGF-βi could preserve the integrity and enhance the function of cultured islets. Such a beneficial effect was mediated via signaling through FAK. Exogenous TGF-βi was capable of sustaining high-level FAK phosphorylation in isolated islets, and FAK knockdown by small interfering RNA in islets resulted in compromised islet function. TGF-βi transgenic (Tg) islets showed better integrity and insulin release after in vitro culture. In vivo, β-cell proliferation was detectable in Tg but not wild-type pancreata. At age above 12 mo, Tg pancreata contained giant islets. Tg mice displayed better glucose tolerance than that of the controls. Tg islets were more potent in lowering blood glucose when transplanted into syngeneic mice with streptozotocin-induced diabetes, and these transplanted islets also underwent regeneration. Our results indicate that TGF-βi is a vital trophic factor promoting islet survival, function, and regeneration. At least some of its beneficial effect was mediated by signaling through FAK.  相似文献   

5.
Studies in vivo indicate that IRS2 plays an important role in maintaining functional beta-cell mass. To investigate if IRS2 autonomously affects beta-cells, we have studied proliferation, apoptosis, and beta-cell function in isolated rat and human islets after overexpression of IRS2 or IRS1. We found that beta-cell proliferation was significantly increased in rat islets overexpressing IRS2 while IRS1 was less effective. Moreover, proliferation of a beta-cell line, INS-1, was decreased after repression of Irs2 expression using RNA oligonucleotides. Overexpression of IRS2 in human islets significantly decreased apoptosis of beta-cells, induced by 33.3 mM D-glucose. However, IRS2 did not protect cultured rat islets against apoptosis in the presence of 0.5 mM palmitic acid. Overexpression of IRS2 in isolated rat islets significantly increased basal and D-glucose-stimulated insulin secretion as determined in perifusion experiments. Therefore, IRS2 is sufficient to induce proliferation in rat islets and to protect human beta-cells from D-glucose-induced apoptosis. In addition, IRS2 can improve beta-cell function. Our results indicate that IRS2 acts autonomously in beta-cells in maintenance and expansion of functional beta-cell mass in vivo.  相似文献   

6.
Viral infection has been implicated as a triggering event that may initiate beta-cell damage during the development of autoimmune diabetes. In this study, the effects of the viral replicative intermediate, double-stranded RNA (dsRNA) (in the form of synthetic polyinosinic-polycytidylic acid (poly IC)) on islet expression of inducible nitric oxide synthase (iNOS), production of nitric oxide, and islet function and viability were investigated. Treatment of rat islets with poly(IC) + interferon-gamma (IFN-gamma) stimulates the time- and concentration-dependent expression of iNOS and production of nitrite by rat islets. iNOS expression and nitrite production by rat islets in response to poly(IC) + IFN-gamma correlate with an inhibition of insulin secretion and islet degeneration, effects that are prevented by the iNOS inhibitor aminoguanidine (AG). We have previously shown that poly(IC) + IFN-gamma activates resident macrophages, stimulating iNOS expression, nitric oxide production and interleukin-1 (IL-1) release. In addition, in response to tumor necrosis factor-alpha (TNF-alpha) + lipopolysaccharide, activated resident macrophages mediate beta-cell damage via intraislet IL-1 release followed by IL-1-induced iNOS expression by beta-cells. The inhibitory and destructive effects of poly(IC) + IFN-gamma, however, do not appear to require resident macrophages. Treatment of macrophage-depleted rat islets for 40 h with poly(IC) + IFN-gamma results in the expression of iNOS, production of nitrite, and inhibition of insulin secretion. The destructive effects of dsRNA + IFN-gamma on islets appear to be mediated by a direct interaction with beta-cells. Poly IC + IFN-gamma stimulates iNOS expression and inhibits insulin secretion by primary beta-cells purified by fluorescence-activated cell sorting. In addition, AG prevents the inhibitory effects of poly(IC) + IFN-gamma on glucose-stimulated insulin secretion by beta-cells. These results indicate that dsRNA + IFN-gamma interacts directly with beta-cells stimulating iNOS expression and inhibiting insulin secretion in a nitric oxide-dependent manner. These findings provide biochemical evidence for a novel mechanism by which viral infection may directly mediate the initial destruction of beta-cells during the development of autoimmune diabetes.  相似文献   

7.
8.
BackgroundIn the present study we assessed the impact of neuropeptide Y receptor (NPYR) modulators, neuropeptide Y (NPY) and pancreatic polypeptide (PP), on islet function and beta-cell survival.MethodsThe effects of NPY and PP on beta-cell function were examined in BRIN BD11 and 1.1B4 beta-cells, as well as isolated mouse islets. Involvement of both peptides in pancreatic islet adaptations to streptozotocin and hydrocortisone, as well as effects on beta-cell proliferation and apoptosis was also evaluated.ResultsNeither NPY nor PP affected in vivo glucose disposal or insulin secretion in mice. However, both peptides inhibited (p < 0.05 to p < 0.001) glucose stimulated insulin secretion from rat and human beta-cells. NPY exerted similar insulinostatic effects in isolated mouse islets. NPY and PP inhibited alanine-induced changes in BRIN BD11 cell membrane potential and (Ca2 +)i. Streptozotocin treatment decreased and hydrocortisone treatment increased beta-cell mass in mice. In addition, streptozotocin, but not hydrocortisone, increased PP cell area. Streptozotocin also shifted the normal co-localisation of NPY with PP, towards more pronounced co-expression with somatostatin in delta-cells. Both streptozotocin and hydrocortisone increased pancreatic exocrine expression of NPY. More detailed in vitro investigations revealed that NPY, but not PP, augmented (p < 0.01) BRIN BD11 beta-cell proliferation. In addition, both peptides exerted protective effects against streptozotocin-induced DNA damage in beta-cells.ConclusionThese data emphasise the involvement of PP, and particularly NPY, in the regulation of beta-cell mass and function.General significanceModulation of PP and NPY signalling is suitable for further evaluation and possible clinical development for the treatment of diabetes.  相似文献   

9.
The expression of a dominant negative glucose-dependent insulinotropic polypeptide receptor (GIPRdn) under the control of the rat pro-insulin gene promoter induces severe diabetes mellitus in transgenic mice. This study aims to gain further insight into the effect of the expression of a dominant negative GIPR on glucose homeostasis and postnatal development of the endocrine pancreas. The diabetic phenotype of GIPRdn transgenic animals was first observed between 14 and 21 days of age (urine glucose>1000 mg/dl). After onset of diabetes, serum glucose was significantly higher and insulin values were significantly lower in GIPRdn transgenic mice vs. non-transgenic littermate controls. Morphometric studies of pancreatic islets and their endocrine cell types were carried out at 10, 30 and 90 days of age. The total islet and total beta-cell volume of transgenic mice was severely reduced as compared to control mice, irrespective of the age at sampling (p<0.05). The total volume of isolated insulin positive cells that were not contained within established islets was significantly reduced in transgenic mice, indicating disturbed islet neogenesis. These findings demonstrate in vivo evidence that intact signaling of G-protein coupled receptors is involved in postnatal islet and beta-cell development and neogenesis of the pancreatic islets.  相似文献   

10.
Species differences in susceptibility of islets to STZ in different mammals have been well documented. Likewise, failure of diabetes induction in birds by streptozotocin has been reported. We hypothesized that the susceptibility of islets to STZ treatment may be related to generation of reactive oxygen species (ROS) and their antioxidant defense mechanisms. To test this hypothesis, we measured the total ROS generated and estimated the damage caused to the chick islets due to STZ treatment, in terms of lipid peroxidation, protein carbonyl formation and DNA strand breaks and compared it with that of mouse islets. We also compared the activities of antioxidant enzymes like catalase, superoxide dismutase (SOD), glutathione peroxidase (GPX), glutathione reductase (GR) and amount of antioxidant molecules like reduced glutathione (GSH) and uric acid under control and STZ-treated conditions. These studies coupled with viability, functionality and presence of glucose transporter GLUT2 in chick and mouse islets clearly indicated that STZ treatment neither affects viability nor functionality of chick islets whereas those of mouse islets are affected significantly. Here we demonstrate for the first time a correlation between the generation of ROS on STZ treatment and antioxidant status with insensitivity of chick islets to STZ resulting into failure of diabetes induction in chick.  相似文献   

11.
12.
Human TAP and its yeast orthologue Mex67p are members of the multigene family of NXF proteins. A conserved feature of NXFs is a leucine-rich repeat domain (LRR) followed by a region related to the nuclear transport factor 2 (the NTF2-like domain). The NTF2-like domain of metazoan NXFs heterodimerizes with a protein known as p15 or NXT. A C-terminal region related to ubiquitin-associated domains (the UBA-like domain) is present in most, but not all NXF proteins. Saccharomyces cerevisiae Mex67p and Caenorhabditis elegans NXF1 are essential for the export of messenger RNA from the nucleus. Human TAP mediates the export of simian type D retroviral RNAs bearing the constitutive transport element, but the precise role of TAP and p15 in mRNA nuclear export has not yet been established. Here we show that overexpression of TAP/p15 heterodimers bypasses nuclear retention and stimulates the export of mRNAs that are otherwise exported inefficiently. This stimulation of mRNA export is strongly reduced by removing the UBA-like domain of TAP and abolished by deleting the LRR domain or the NTF2-like domain. Similar results are obtained when TAP/p15 heterodimers are directly tethered to the RNA export cargo. Our data indicate that formation of TAP/p15 heterodimers is required for TAP-mediated export of mRNA and show that the LRR domain of TAP plays an essential role in this process.  相似文献   

13.
Petersson M  Lagumdzija A  Stark A  Bucht E 《Peptides》2002,23(6):1121-1126
Oxytocin receptors have recently been demonstrated in human osteoblast-like (hOB) cells. In this study, oxytocin 100-1000 pmol/l increased cell proliferation of primary cultures of hOB cells, measured by [3H]thymidine incorporation, (P<0.01). In human osteosarcoma cell-line (SaOS-2), oxytocin 100 pmol/l increased cell proliferation (measured by [3H]thymidine incorporation and a commercially available kit) and protein synthesis ([3H]proline incorporation) (P<0.05). The increase in cell proliferation was abolished when SaOS-2 cells were incubated with an oxytocin antagonist and oxytocin. Oxytocin 100 pmol/l decreased interleukin-6 (IL-6) production of the hOB cells (23.4+/-1.96 versus 33.4+/-2.65 pg/well; P<0.001). These findings indicate that oxytocin may affect bone metabolism in humans.  相似文献   

14.
Type I diabetes mellitus is an autoimmune disease characterized by the selective destruction of the insulin-secreting beta-cell found in pancreatic islets of Langerhans. Cytokines such as interleukin-1 (IL-1), interferon-gamma (IFN-gamma), and tumor necrosis factor-alpha (TNF-alpha) mediate beta-cell dysfunction and islet degeneration, in part, through the induction of the inducible isoform of nitric-oxide synthase and the production of nitric oxide by beta-cells. Cytokines also stimulate the expression of the inducible isoform of cyclooxygenase, COX-2, and the production of prostaglandin E(2) (PGE(2)) by rat and human islets; however, the role of increased COX-2 expression and PGE(2) production in mediating cytokine-induced inhibition of islet metabolic function and viability has been incompletely characterized. In this study, we have shown that treatment of rat islets with IL-1beta or human islets with a cytokine mixture containing IL-1beta + IFN-gamma +/- TNF-alpha stimulates COX-2 expression and PGE(2) formation in a time-dependent manner. Co-incubation of rat and human islets with selective COX-2 inhibitors SC-58236 and Celecoxib, respectively, attenuated cytokine-induced PGE(2) formation. However, these inhibitors failed to prevent cytokine-mediated inhibition of insulin secretion or islet degeneration. These findings indicate that selective inhibition of COX-2 activity does not protect rat and human islets from cytokine-induced beta-cell dysfunction and islet degeneration and, furthermore, that islet production of PGE(2) does not mediate these inhibitory and destructive effects.  相似文献   

15.
Expression of immune modulating mediators in human Islets of Langerhans could have important implications for development of autoimmunity in type 1 diabetes and influence the outcome of clinical islet transplantation. Islets obtained from five donors were analyzed at various times after isolation using cDNA array technology. The Atlas Human Cytokine/Receptor and Hematology/Immunology nylon membranes representing 268 genes and 406, respectively, were used and the relative expression of each gene analyzed. Of the 51 gene products identified, high mRNA expression of MCP-1, MIF, VEGF, and thymosin beta-10 was detected in all islet samples. IL-8, IL-1-beta, IL-5R, and INF-gamma antagonist were expressed in islets cultured for 2 days. IL-2R was expressed in islets cultured for more than 6 days. In conclusion, several inflammatory mediators were expressed in isolated islets, particularly at an early stage after isolation, indicating that a few days of culture could be beneficial for the outcome of islet transplantation.  相似文献   

16.
Park S  Hong SM  Sung SR 《Life sciences》2008,82(9-10):503-511
Not only exendin-4 but also exercise has been reported to improve glucose homeostasis by enhancing insulinotropic action, but the nature of its molecular mechanism has not been clarified. We investigated a mechanism to promote insulinotropic action by means of exendin-4 and exercise training in 90% pancreatectomized (Px) rats fed 40% energy fat diets. Px diabetic rats were divided into 4 groups: 1) exendin-4, 2) exendin-4 plus exercise, 3) saline (control), and 4) exercise. During the 8-week experimental period, rats in the exendin-4 groups were subcutaneously administered with 150 pmol/kg exendin-4 twice a day, while those in the exercise groups ran on an uphill treadmill with a 15 degree incline at 20 m/min for 30 min 5 days a week. First phase insulin secretion was elevated by both the administration of exendin-4 and exercise training during hyperglycemic clamp. However, second phase insulin secretion did not differ among the groups. Individual treatment of exendin-4 and exercise expanded beta-cell mass by increasing its proliferation and reducing its apoptosis, but the administration of exendin-4 plus exercise training did not produce any additional, positive effects. Both exendin-4 and exercise enhanced insulin receptor substrate (IRS)-2 expression through the activation of cAMP responding element binding protein in the islets, which potentiated their insulin/insulin like growth factor-1 signaling. The potentiation of the signaling increased the expression of pancreas duodenum homeobox-1, involved in beta-cell proliferation. In conclusion, exendin-4 and exercise equivalently improved glucose homeostasis due to the induction of IRS-2 in the islets of diabetic rats through a cAMP dependent common pathway.  相似文献   

17.
Objectives: Midkine, a heparin‐binding growth factor, promotes population growth, survival and migration of several cell types, but its effect on articular chondrocytes remains unknown. The aim of this study was to investigate its role on proliferation of articular chondrocytes in vitro and in vivo. Materials and methods: Bromodeoxyuridine incorporation and MTT assays were performed to examine the proliferative effect of recombinant human midkine (rhMK) on primary articular chondrocytes. Activation of extracellular signal‐regulated kinase (ERK) and phosphatidylinositol 3‐kinase (PI3K) was analysed using western blot analysis. Systemic and local delivery of rhMK into mice and rats was preformed to investigate the proliferative effect of rhMK in vivo, respectively. Histological evaluation, including measurement of articular cartilage thickness, cell density, matrix staining and immunostaining of proliferating cell nuclear antigen was carried out. Results: rhMK promoted proliferation of articular chondrocytes cultured in a monolayer, which was mediated by activation of ERK and PI3K. The proliferative role of rhMK was not coupled to dedifferentiation of culture‐expanded cells. Consistent with its action in vitro, rhMK stimulated proliferation of articular chondrocytes in vivo when it was administered subcutaneously and intra‐articularly in mice and rats, respectively. Conclusion: Our results demonstrate that rhMK stimulates proliferation of primary articular chondrocytes in vitro and in vivo. The results of this study warrant further examination of rhMK for treatment of animal models of articular cartilage defects.  相似文献   

18.
Pancreatic islet transplantation is a promising therapy for Type I Diabetes. For many years the method used worldwide for islet purification in both rodent and human islet isolation has been Ficoll-based density gradients, such as Histopaque. However, it is difficult to purify islets in laboratories with staff limitations when large scale isolations are required. We hypothesized that filtration could be a more simple and fast alternative to obtain good quality islets. Four separate islet isolations were performed per method, comparing filtration and Histopaque purification with handpicking as the gold standard method for islet purity. Different parameters of quality were assessed: yield in number of islets per pancreas, purity by dithizone staining, viability by Fluorescein Diacetate/Propidium Iodide vital staining and in vitro functionality assessed by Glucose Stimulated Insulin Secretion. Time efficiency and cost were also analyzed. The overall quality of the islets obtained both by Histopaque and filtration was good. Filtration saved almost 90 % of the time consumed by Histopaque purification, and was also cheaper. However, one-third of the islets were lost. Since human and rodent islets share similar size but different density, filtration appears as a purification method with potential interest in translation to clinic.  相似文献   

19.
Islet amyloid polypeptide (IAPP) is a major component of amyloid deposition in pancreatic islets of patients with type 2 diabetes. It is known that IAPP can inhibit glucose-stimulated insulin secretion; however, the mechanisms of action have not yet been established. In the present work, using a rat pancreatic beta-cell line, INS1E, we have created an in vitro model that stably expressed human IAPP gene (hIAPP cells). These cells showed intracellular oligomers and a strong alteration of glucose-stimulated insulin and IAPP secretion. Taking advantage of this model, we investigated the mechanism by which IAPP altered beta-cell secretory response and contributed to the development of type 2 diabetes. We have measured the intracellular Ca(2+) mobilization in response to different secretagogues as well as mitochondrial metabolism. The study of calcium signals in hIAPP cells demonstrated an absence of response to glucose and also to tolbutamide, indicating a defect in ATP-sensitive potassium (K(ATP)) channels. Interestingly, hIAPP showed a greater maximal respiratory capacity than control cells. These data were confirmed by an increased mitochondrial membrane potential in hIAPP cells under glucose stimulation, leading to an elevated reactive oxygen species level as compared with control cells. We concluded that the hIAPP overexpression inhibits insulin and IAPP secretion in response to glucose affecting the activity of K(ATP) channels and that the increased mitochondrial metabolism is a compensatory response to counteract the secretory defect of beta-cells.  相似文献   

20.
Islet beta-cell proliferation is a very important component of beta-cell adaptation to insulin resistance and prevention of type 2 diabetes mellitus. However, we know little about the mechanisms of beta-cell proliferation. We now investigate the relationship between pyruvate carboxylase (PC) pathway activity and islet cell proliferation 5 days after 60% pancreatectomy (Px). Islet cell number, protein, and DNA content, indicators of beta-cell proliferation, were increased two- to threefold 5 days after Px. PC and pyruvate dehydrogenase (PDH) activities increased only approximately 1.3-fold; however, islet pyruvate content and malate release from isolated islet mitochondria were approximately threefold increased in Px islets. The latter is an indicator of pyruvate-malate cycle activity, indicating that most of the increased pyruvate was converted to oxaloacetate (OAA) through the PC pathway. The contents of OAA and malate, intermediates of the pyruvate-malate cycle, were also increased threefold. PDH and citrate content were only slightly increased. Importantly, the changes in cell proliferation parameters, glucose utilization, and oxidation and malate release were partially blocked by in vivo treatment with the PC inhibitor phenylacetic acid. Our results suggest that enhanced PC pathway in Px islets may have an important role in islet cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号