首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipopolysaccharides constitute the outer leaflet of the outer membrane of Gram-negative bacteria and are therefore essential for cell growth and viability. The heptosyltransferase WaaC is a glycosyltransferase (GT) involved in the synthesis of the inner core region of LPS. It catalyzes the addition of the first L-glycero-D-manno-heptose (heptose) molecule to one 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) residue of the Kdo2-lipid A molecule. Heptose is an essential component of the LPS core domain; its absence results in a truncated lipopolysaccharide associated with the deep-rough phenotype causing a greater susceptibility to antibiotic and an attenuated virulence for pathogenic Gram-negative bacteria. Thus, WaaC represents a promising target in antibacterial drug design. Here, we report the structure of WaaC from the Escherichia coli pathogenic strain RS218 alone at 1.9 A resolution, and in complex with either ADP or the non-cleavable analog ADP-2-deoxy-2-fluoro-heptose of the sugar donor at 2.4 A resolution. WaaC adopts the GT-B fold in two domains, characteristic of one glycosyltransferase structural superfamily. The comparison of the three different structures shows that WaaC does not undergo a domain rotation, characteristic of the GT-B family, upon substrate binding, but allows the substrate analog and the reaction product to adopt remarkably distinct conformations inside the active site. In addition, both binary complexes offer a close view of the donor subsite and, together with results from site-directed mutagenesis studies, provide evidence for a model of the catalytic mechanism.  相似文献   

2.
Protease II from Escherichia coli. Purification and characterization.   总被引:5,自引:0,他引:5  
We have previously demonstrated the existence of two types of endopeptidase in Escherichia coli. A purification procedure is described for one of these, designated protease II. It has been purified about 13,500-fold with a recovery of 24%. The isolated enzyme appears homogeneous by electrophoresis and gel filtration. Its molecular weight is estimated by three different methods to be about 58,000. Its optimal pH is around 8. Protease II activity is unaffected by chelating agents and sulfhydryl reagents. Amidase and proteolytic activities are stimulated by calcium ion, which decreases the enzyme stability. Like pancreatic trypsin, this endopeptidase catalyses the hydrolysis of alpha-amino-substituted lysine and arginine esters. It appears distinct from the previously isolated protease I, which is a chymotrypsin-like enzyme. The apparent Michaelis constant for hydrolysis of N-benzoyl-L-arginine ethyl ester is 4.7 X 10(-4) M. The esterase activity is inhibited by diisopryopylphosphorofluoridate (Ki(app) equals 2.7 X 10(-3) M) and tosyl lysine chloromethyl ketone (Ki(app) equals 1.8 X 10(-5) M), indicating that serine and histidine residues may be present in the active site. However, protease II is insensitive to phenylmethanesulfonyl fluoride and several natural trypsin inhibitors. Its amidase and esterase activities are competitively inhibited by free arginine and aromatic amidines. The proteolytic activity measured on axocasein is very low. In contrast to trypsin, protease II is without effect on native beta-galactosidase. It easily degrades aspartokinase I and III. Nevertheless both enzymes are resistant to proteolysis in the presence of their respective allosteric effectors. These results provide further evidence that such differences in protease susceptibility can be related to the conformational state of the substrate. The possible implication of structural changes in the mechanism of preferential proteolysis in vivo, is discussed.  相似文献   

3.
Czyzyk DJ  Liu C  Taylor EA 《Biochemistry》2011,50(49):10570-10572
Heptosyltransferase I (HepI) is responsible for the transfer of l-glycero-d-manno-heptose to a 3-deoxy-α-D-oct-2-ulopyranosonic acid (Kdo) of the growing core region of lipopolysaccharide (LPS). The catalytic efficiency of HepI with the fully deacylated analogue of Escherichia coli HepI LipidA is 12-fold greater than with the fully acylated substrate, with a k(cat)/K(m) of 2.7 × 10(6) M(-1) s(-1), compared to a value of 2.2 × 10(5) M(-1) s(-1) for the Kdo(2)-LipidA substrate. Not only is this is the first demonstration that an LPS biosynthetic enzyme is catalytically enhanced by the absence of lipids, this result has significant implications for downstream enzymes that are now thought to utilize deacylated substrates.  相似文献   

4.
A new DNA-dependent ATPase was isolated and purified from soluble extracts of Escherichia coli. This enzyme, called ATPase II, has a molecular weight of 86,000 and exists in a monomeric state. It degrades ATP (or dATP) to ADP (or dADP) and Pi in the presence of magnesium and requires a double-stranded polynucleotide as cofactor. A correlation between the efficiency as cofactor and the melting point of the polynucleotide has been found; the lower the melting temperature, the higher the stimulation of ATPase II. The enzyme binds to single-stranded DNA and poly[d(A-T)] copolymer, but not to the double-stranded circular DNA (Form I) of simian virus 40.  相似文献   

5.
6.
GTP cyclohydrolase I of Escherichia coli has been purified from a recombinant bacterial strain. The enzyme was crystallized from 0.6 M-sodium citrate and from 0.8 M-sodium/potassium phosphate, respectively. Crystals grown in citrate showed X-ray diffraction extending to a resolution better than 3 A. The space group was P2(1) with cell dimensions a = 204.8 A, b = 210.1 A, c = 72.2 A, alpha = gamma = 90 degrees and beta = 95.8 degrees.  相似文献   

7.
We have purified 3-methyladenine DNA glycosylase I from Escherichia coli to apparent physical homogeneity. The enzyme preparation produced a single band of Mr 22,500 upon sodium dodecyl sulphate/polyacrylamide gel electrophoresis in good agreement with the molecular weight deduced from the nucleotide sequence of the tag gene (Steinum, A.-L. and Seeberg, E. (1986) Nucl. Acids Res. 14, 3763-3772). HPLC confirmed that the only detectable alkylation product released from (3H)dimethyl sulphate treated DNA was 3-methyladenine. The DNA glycosylase activity showed a broad pH optimum between 6 and 8.5, and no activity below pH 5 and above pH 10. MgSO4, CaCl2 and MnCl2 stimulated enzyme activity, whereas ZnSO4 and FeCl3 inhibited the enzyme at 2 mM concentration. The enzyme was stimulated by caffeine, adenine and 3-methylguanine, and inhibited by p-hydroxymercuribenzoate, N-ethylmaleimide and 3-methyladenine. The enzyme showed no detectable endonuclease activity on native, depurinated or alkylated plasmid DNA. However, apurinic sites were introduced in alkylated DNA as judged from the strand breaks formed by mixtures of the tag enzyme and the bacteriophage T4 denV enzyme which has apurinic/apyrimidinic endonuclease activity. It was calculated that wild-type E. coli contains approximately 200 molecules per cell of 3-methyladenine DNA glycosylase I.  相似文献   

8.
Escherichia coli heat-stable enterotoxin II (STII) was purified to homogeneity by successive column chromatographies from the culture supernatant of a strain harboring the plasmid encoding the STII gene. The purified STII evoked a secretory response in the suckling mouse assay and ligated rat intestinal loop assay in the presence of protease inhibitor, but the response was not observed in the absence of the inhibitor. Analyses of the peptide by the Edman degradation method and fast atom bombardment mass spectrometry revealed that purified STII is composed of 48 amino acid residues and that its amino acid sequence was identical to the 48 carboxy-terminal amino acids of STII predicted from the DNA sequence (C. H. Lee, S. L. Mosely, H. W. Moon, S. C. Whipp, C. L. Gyles, and M. So, Infect. Immun. 42:264-268, 1983). STII has four cysteine residues which form two intramolecular disulfide bonds. Two disulfide bonds were determined to be formed between Cys-10-Cys-48 and Cys-21-Cys-36 by analyzing tryptic hydrolysates of STII.  相似文献   

9.
Peptidyl-prolyl cis-trans isomerases (PPIases), enzymes that catalyze the cis-trans isomerization of peptide bonds to which proline contributes the nitrogen, were purified from Escherichia coli. In this organism, at least two PPIases are present. Both the cationic (periplasmic) and anionic (cytoplasmic) PPIases are inhibited by cyclosporin A with a Ki of 25-50 microM, a concentration 1000-fold higher than that required for eukaryotic PPIases. Although isoelectric focusing indicates that the two enzymes differ in isoelectric point by at least 4.0 pH units, the specific activities of the enzymes toward the tetrapeptide substrate succinyl-Ala-Ala-Pro-Phe-methyl-coumarylamide are equivalent. The activity of both enzymes for a series of substituted succinyl-Ala-Xaa-Pro-Phe-para-nitroanilide tetrapeptides suggests that the structure and function of the active site of the prokaryotic proteins is similar to that of eukaryotic cyclophilins. Both enzymes are capable of catalyzing the refolding of thermally denatured type III collagen. Antibodies against the periplasmic PPIase do not recognize the cytoplasmic enzyme, indicating significant differences in epitopes between the two forms. Circular dichroism spectroscopy indicates that the secondary structure of the cationic protein consists of 17% alpha-helix, 34% beta-sheet, 17% turns, 33% random coil and is very similar to human cytosolic PPIase.  相似文献   

10.
Dihydroorotase from Escherichia coli. Purification and characterization   总被引:4,自引:0,他引:4  
Dihydroorotase (4,5-L-dihydroorotate amidohydrolase (EC 3.5.2.3], which catalyzes the reversible cyclization of N-carbamyl-L-aspartate to dihydro-L-orotate, has been purified to homogeneity from an over-producing strain of Escherichia coli. Treatment of 70 g of frozen cell paste produces about 7 mg of pure enzyme, a yield of about 35%. The native molecular weight, determined by equilibrium sedimentation, is 80,900 +/- 4,300. The subunit molecular weight, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis is 38,400 +/- 2,600, and by amino acid analysis is 41,000. The enzyme is thus a dimer and contains 0.95 +/- 0.08 tightly bound zinc atoms per subunit when isolated by the described procedure, which would remove any loosely bound metal ions. Isoelectric focusing under native conditions yields a major species at isoelectric point 4.97 +/- 0.27 and a minor species at 5.26 +/- 0.27; dihydroorotase activity is proportionately associated with both bands. The enzyme has a partial specific volume of 0.737 ml/g calculated from the amino acid composition and a specific absorption at 278 nm of 0.638 for a 1 mg/ml solution. At 30 degrees C, the Michaelis constant and kcat for dihydro-DL-orotate (at pH 8.0) are 0.0756 mM and 127 s-1, respectively; for N-carbamyl-DL-aspartate (at pH 5.80), they are 1.07 mM and 195 s-1.  相似文献   

11.
12.
The second heme-containing hydroperoxidase isozyme (HP-II) has been isolated from aerobic cultures of Escherichia coli B. The protein exists as a stable tetramer of subunits of equal size, with a combined molecular weight of 312,000. The heme spectrum of HP-II is unusual, in that it exhibits two absorbance maxima at 407 and 591 nm; the alkaline pyridine hemochromogen spectrum shows maxima at 425, 559, and 609 nm. HP-II differs in several respects from the HP-I isozyme previously reported (Claiborne, A., and Fridovich, I. (1979) J. Biol. Chem. 254, 4245-4252). Thus HP-II is virtually devoid of peroxidatic activity toward o-dianisidine but has a 6-fold higher catalatic activity than HP-I. Antisera to HP-II do not cross-react with HP-I, and analyses of chymotryptic and cyanogen bromide digests suggest differences in primary structure between these two isozymes.  相似文献   

13.
Mutants of Escherichia coli K12 deficient in exonuclease I (xon?)3 were identified by enzymic assay of randomly selected, heavily mutagenized clones. From one of the six mutants of independent origin a thermolabile variant of exonuclease I was partially purified and identified, indicating that the mutation is probably in a structural gene for the enzyme. Transduction of this mutation into a recB? recC? strain did not result in the suppression of any of the phenotypic traits of the recipient. Although the five other mutants also appear to have temperature-sensitive exonuclease I activities in crude extracts, these enzymes were not sufficiently stable to permit purification. These latter mutations were of the xonA? type; they produced a temperature-dependent suppression of the sensitivity to ultraviolet light and to mitomycin C manifested by a recB? recC? strain. None of the six mutations were of the sbcB? type; that is, they did not suppress the recombination deficiency of a recB? recC? strain.In experiments with bacteriophage Plke, the six mutations were 41 to 62% cotransducible with the his region of E. coli. Heterozygous F′-merodiploids were constructed and studied for possible complementation of exonuclease I activity. All six mutations and an sbcB? mutation were recessive to the wild-type alleles, and all were found to belong to a single complementation group. The results suggest that alterations of a structural gene for exonuclease I may result in the indirect suppression of the ultraviolet and mitomycin sensitivity manifested by recB? recC? strains.  相似文献   

14.
The tricarboxylic acid cycle enzyme fumarase (fumarate hydratase; EC 4.2.1.2) catalyzes the reversible hydration of fumarate to L-malate. We report the molecular cloning of a cDNA (StFum-1) that encodes fumarase from potato (Solanum tuberosum L.). RNA blot analysis demonstrated that StFum-1 is most strongly expressed in flowers, immature leaves, and tubers. The deduced protein contains a typical mitochondrial targeting peptide and has a calculated molecular mass of 50.1 kD (processed form). Potato fumarase complemented a fumarase-deficient Escherichia coli mutation for growth on minimal medium that contains acetate or fumarate as the sole carbon source, indicating that functional plant protein was produced in the bacterium. Antiserum raised against the recombinant plant enzyme recognized a 50-kD protein in wild-type but not in StFum-1 antisense plants, indicating specificity of the immunoreaction. A protein of identical size was also detected in isolated potato tuber mitochondria. Although elevated activity of fumarase was previously reported for guard cells (as compared with mesophyll cells), additional screening and genomic hybridization data reported here do not support the hypothesis that a second fumarase gene is expressed in potato guard cells.  相似文献   

15.
16.
Using recombinant DNA techniques, we have constructed phoA-lacZ gene fusions. Two of the fusions encode hybrid proteins containing approximately half of alkaline phosphatase at the amino terminus joined to beta-galactosidase. For the one fusion strain analyzed in detail, it was shown that the hybrid protein is found in the membrane fraction of cells. In its membrane location, the beta-galactosidase activity of the hybrid is not sufficient to support cell growth on lactose. Unexpectedly, fusions containing phoA and lacZ joined in the wrong translational reading frame were also obtained. These fusions direct the phosphate-regulated synthesis of beta-galactosidase, apparently via a translation restart mechanism. Thus, when gene fusions are constructed, the presence of properly regulated beta-galactosidase activity does not necessarily indicate that a hybrid protein is being produced.  相似文献   

17.
Escherichia coli fructose-1,6-bisphosphatase has been purified for the first time, using a clone containing an approximately 50-fold increased amount of the enzyme. The procedure includes chromatography in phosphocellulose followed by substrate elution and gel filtration. The enzyme has a subunit molecular weight of approximately 40,000 and in nondenaturing conditions is present in several aggregated forms in which the tetramer seems to predominate at low enzyme concentrations. Fructose bisphosphatase activity is specific for fructose 1,6-bisphosphate (Km of approximately 5 microM), shows inhibition by substrate above 0.05 mM, requires Mg2+ for catalysis, and has a maximum of activity around pH 7.5. The enzyme is susceptible to strong inhibition by AMP (50% inhibition around 15 microM). Phosphoenolpyruvate is a moderate inhibitor but was able to block the inhibition by AMP and may play an important role in the regulation of fructose bisphosphatase activity in vivo. Fructose 2,6-bisphosphate did not affect the rate of reaction.  相似文献   

18.
RNA Polymerase holoenzyme and core enzyme from Escherichia coli B have been shown to contain two zinc ions. Flameless atomic absorption spectroscopy of the isolated core subunits indicated that one zinc ion is localized on the beta subunit and the other is bound on the beta' subunit. Atomic fluorescence spectroscopy showed that prolonged dialysis of the metalloenzyme against 0.01 M o-phenanthroline resulted in the removal of both zinc(II) ions with accompanying loss of enzymatic activity. The activity of the apoenzyme was observed to be completely restored by readdition of zinc(II) and partially restored by cobalt(II).  相似文献   

19.
An efficient expression system was constructed in Escherichia coli that produced a 33-kDa fragment, C-274, of human fibronectin with a strong cell-adhesive activity. The entire sequence of the heparin-binding domain with 271 amino acids, H-271, was also expressed. Deletion analysis of the type III repeats showed that the heparin-binding site was at type III-13. The cell-adhesive activity of a fusion protein, CH-271, containing the cell- and the heparin-binding domains was twice that of C-274 when BHK but not B16-F10 melanoma cells were tested; H-271 alone was inactive. Recombinant proteins containing the CS1 sequence of the IIICS region were more active than C-274 and CH-271 with B16-F10. However, H-296, which contained both H-271 and CS1, was almost inactive with BHK. CH-296, which contained CS1 at the C-terminus of CH-271, was more active with B16-F10 than H-296 and C-CS1, which was produced by the deletion of H-271 from CH-296. Thus, the cell-binding domain was active with both kinds of cells. The heparin-binding domain promoted the adhesion of both kinds of cells only when linked to the cell-binding domain or CS1. CS1 was specific for the adhesion of B16-F10 but was not essential.  相似文献   

20.
Treatment of Escherichia coli dihydroorotase (a homodimer of subunit molecular weight 38,729) containing only the 1 active site Zn(II) ion per subunit with the sulfhydryl reagent N-(ethyl)-maleimide (NEM) blocks the two external Zn(II) sites per subunit and dramatically lessens the precipitation caused by high concentrations of Zn(II); stabilizes the enzyme partially against air oxidation and dilution inactivation; makes the active site Zn(II) easier to remove; and lowers Km and increases kcat. Treatment of NEM-blocked dihydroorotase ((NEM)dihydroorotase) with the chelator 2,6-pyridinedicarboxylic acid at pH 5.0 in the absence of oxygen and trace metal ions removes the active site Zn(II) with a half-life of 15 min, allowing the production of milligram amounts of moderately stable apo-(NEM)dihydroorotase in about 80% yield. Treatment of apo-(NEM)dihydroorotase with Co(II) at pH 7.0 produces (NEM)dihydroorotase completely substituted at the active site with Co(II) in 100% yield: analysis gives 0.95-1.1 g atoms of Co(II) per active site and 0.03-0.05 g atoms of Zn(II) per active site. This Co(II)-(NEM)dihydroorotase is hyperactive at pH 8. The electronic absorption spectrum of Co(II)-(NEM)dihydroorotase at pH 6.5 implicates an active site thiol group as a ligand to the metal ion. The spectrum is inconsistent with tetrahedral coordination of the active site metal ion and is most consistent with a pentacoordinate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号