首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract Sericinus montelus overwinters as diapausing pupae. In the present study, the effects of photoperiod and temperature on diapause induction and termination of diapause are investigated. The results obtained demonstrate that high temperature can reverse the effect of short day‐lengths on diapause induction. Under an LD 12 : 12 h photoperiod, all pupae enter diapause at 15, 20 and 25 °C, whereas all pupae develop without diapause at 35 °C. No pupae enter diapause under an LD 14 : 10 h photoperiod when the temperature is above 20 °C. Photoperiodic response curves obtained at 25 and 30 °C indicate that S. montelus is a long‐day species and the critical day‐length is approximately 13 h at 25 °C. At 25 °C, the duration of diapause is shortest when the diapausing pupae are maintained under an LD 16 : 8 h photoperiod and increases under LD 14 : 10 h and LD 12 : 12 h photoperiods. Under an LD 16 : 8 h photoperiod, the duration of diapause is shortest when the diapausing pupae are maintained at 25 °C, followed by 20 and 30 °C, and then at 15 °C. These results suggest that a moderate temperature favours diapause development under a diapause‐averting photoperiod in this species. The duration of diapause induced by an LD 12 : 12 h photoperiod is significantly longer at 25 °C than those at 15, 20 and 30 °C, and is shortest at 15 °C. At 25 °C, the duration of diapause induced by LD 6 : 18, LD 12 : 12 and LD 13 : 11 h photoperiods is similar and longer than 90 days. Thus, the diapause‐inducing conditions may affect diapause intensity and a photoperiod close to the critical day‐length has significant influence on diapause intensity in S. montelus.  相似文献   

2.
Larvae of wild type (WT) strain of Chymomyza costata Zetterstedt (Diptera: Drosophilidae) enter diapause (stop developing) in response to short‐day signal at a constant 18 °C, whereas larvae of a non‐photoperiodic‐diapause (NPD) strain do not respond to photoperiodic signalling and continue in larval development irrespective of daylength. The present study shows that WT larvae also respond reliably to thermoperiodic signalling (daily cycles of temperature) under constant darkness, whereas the NPD larvae do not, suggesting that the pathways transducing the environmental token stimuli (photoperiod and thermoperiod) onto the diapause developmental programme might merge functionally in the central biological clock system known to be mutated in NPD strain. Temperature and larval population density modify the output of token stimuli signalling. High temperatures (>24 °C) tend to avert, whereas low temperatures (<18 °C), especially in combination with constant darkness, stimulate diapause induction in WT strain. Overcrowding (>200 larvae per 5 g of larval diet) lengthens the duration of larval development and induces a ‘diapause‐like’ developmental arrest of relatively weak intensity in up to 60% of larvae of both strains. At high temperatures (>30 °C), all WT larvae continue direct development but subsequently die during the pupal stage. Low temperature exposure (<12 °C) causes quiescence in the majority of the larvae of both strains. Starvation blocks development and causes mortality when applied in larvae younger than day 3 of the third instar. Older larvae survive starvation and their photoperiodically‐induced developmental pre‐programming is not affected. Collectively, the results show that diapause induction in C. costata is a result of various interacting effects of multiple environmental factors.  相似文献   

3.
Abstract To overcome the disadvantages of current silkworm Bombyx mori transgenic technology, such as costly and time‐consuming to maintain non‐diapause transgenic silkworms, we report here on the development of treatments for the germline transformation of diapause silkworm strains. Our results showed that HCl treatment within 3 h of oviposition was able to prevent the diapause of eggs from Japanese lineage diapause silkworm strains and was also suitable for germline transformation of the same strains. By incubating developing mother eggs from Chinese lineage diapause silkworm strains at 15°C (15°C‐IME), we were able to prevent the diapause of their daughter eggs; a similar strategy (15°C‐IMES) for the germline transformation of the same strains was that the mother eggs were incubated at 15°C, and the daughter eggs were then microinjected according to the conventional microinjection methods used for non‐diapause eggs. By combining temperature and light controls, the improved 15°C‐IMES strategy prevented diapause in daughter eggs, and also enabled the germline transformation of both Japanese and Chinese lineage diapause silkworm strains. Although each of the strategies developed here has advantages and disadvantages, we suggest that the 15°C‐IMES strategy is a good reference for the establishment of germline transformation technologies of other egg diapause insects. These new strategies for the efficient germline transformation of diapause silkworm strains are likely to improve the practical use of silkworm transgenic lines in sericulture and also highlight silkworm functional genomics research and its modeling.  相似文献   

4.
Cold exposure (2°C for 7 days) in constant darkness at mummy stage induces diapause expression in 9% of the Praon volucre Haliday population. Diapausing parasitoids show a significant delay in emergence time compared with nondiapausing counterparts. A diapause‐mediated polyphenism is observed in mummy colour, with diapausing mummies being clearly darker than nondiapausing ones. The diapause status of dark mummies is confirmed by a significant reduction in metabolic rate. Diapausing parasitoids also display specific morphological characteristics: they are heavier (fresh and dry mass) and accumulate larger fat reserves than nondiapausing counterparts. The diapause status is associated with a fitness cost in terms of adult longevity. There is no evidence of diapause‐related change in supercooling ability.  相似文献   

5.
When diapause and non‐diapause eggs of the same bivoltine strain of Bombyx mori were chilled at 5°C for more than 30 days, the hatchability of diapause eggs increased while that of non‐diapause eggs decreased, respectively. To investigate the relationship between effects of chilling on the hatchability and the metabolism of hydrogen peroxide (H2O2), content of H2O2 and activities of superoxide dismutase (SOD), xanthine oxidase (XO), and catalase (CAT) between diapause and non‐diapause eggs were determined during the chilling at 5°C. The significant enhancement of H2O2 occurred prior to the quick increase of the hatchability in diapause eggs and coincided with the quick decline of the hatchability in non‐diapause eggs, respectively. Diapause eggs contained significantly higher H2O2 and XO activity and lower CAT activity compared to non‐diapause eggs. Our results showed that there were significant differences in the metabolism of H2O2 between diapause and non‐diapause eggs during chilling and that significant enhancement of H2O2 may be involved in the diapause termination of diapause eggs and the cell damage of non‐diapause eggs. © 2010 Wiley Periodicals, Inc.  相似文献   

6.
Khapra beetle, Trogoderma granarium Everts (Coleoptera: Dermestidae), is a pest of stored grain in Africa, Asia, and Europe. It is a quarantine insect for much of the rest of the world. Control of T. granarium can be achieved with methyl bromide, but this fumigant is an ozone‐depleting substance and is being phased out worldwide. Thus, there is an urgent need to find new methods of control, including the use of low temperatures. Here, we assess the effects of diapause and cold acclimation on the cold tolerance of T. granarium. The percentage of larvae in diapause increased with larval density, reaching 57.3% when reared at a density of 73 larvae g?1 diet. The cold tolerance of T. granarium was assessed by the supercooling points (SCPs) of various life stages. The SCP of non‐acclimated insects ranged from ?26.2 ± 0.2 °C (mean ± SEM) for eggs to ?14.4 ± 0.4 °C for larvae. The lowest SCP for larvae, ?24.3 ± 0.3 °C, was obtained for diapausing‐acclimated larvae. Based on mean LT50 values, the most cold‐tolerant stage at ?10 °C was the diapausing‐acclimated larvae (87 days) followed by non‐diapausing‐acclimated larvae (51 days), diapausing non‐acclimated larvae (19 days), adults (4 days), non‐diapausing non‐acclimated larvae (2 days), pupae (0.4 days), and eggs (0.2 days). The estimated times to obtain 99.9968% mortality (Probit 9) for diapausing‐acclimated larvae are 999, 442, 347, 84, and 15 days at 0, ?5, ?10, ?15, and ?20 °C, respectively. Probit 9 is an estimated value used by quarantine experts to estimate conditions that are required to kill all insects. In light of the long exposure time needed to control T. granarium even at ?20 °C, cooling to below ?27 °C (i.e., below the SCP of eggs) will quickly kill all life stages and may be the best way to control this insect with low temperatures.  相似文献   

7.
Female two‐spotted spider mite Tetranychus urticae are grown under different photoperiods and the photoperiodic regulation of diapause is examined. The photoperiodic response curve for diapause induction was of the long day–short day type, with critical day lengths (CDLs) of 2 and 12.5 h; diapause was induced between these CDLs. The preimaginal period is significantly longer in diapausing females than in non‐diapausing females; moreover, a significant positive correlation is detected between diapause incidence and deutonymphal period. Diapause incidence is high when long‐night photoperiods are applied against a background of continuous darkness in the stages including the deutonymph; this stage appears to be the most sensitive to photoperiod. These observations suggest that diapause‐inducing conditions inhibit nymphal development, particularly in the deutonymphal stage when photoperiodic time measurement for determination of reproduction or diapause is carried out.  相似文献   

8.
Codling moth Cydia pomonella (L.) (Lepidoptera, Tortricidae) larvae kept under a short photoperiod enter a diapause which can be broken by exposure to 25°C following an extended chilling period. We investigated the effects of the ecdysteroid agonist tebufenozide on the diapause of this species, both on a laboratory strain susceptible to insecticides and two strains selected for resistance to diflubenzuron or deltamethrin. The treatment induced moulting by breaking diapause of the susceptible strain when applied at the end of the growth period, or by reducing the pre-emergence period when applied after chilling. The strains exhibiting resistance in the neonate instar were also resistant to the ecdysteroid agonist applied to diapausing larvae, indicating that mechanisms of resistance remained active during this arrest of development. High doses of tebufenozide were lethal for the most resistant insects, but neither reduced the pupation delay nor produced the larval-pupal moults which occur in the susceptible strain. As diapausing larvae of C. pomonella can be easily collected, the expression of resistance to tebufenozide both in the target instar, i.e. neonates, and during diapause may contribute to early detection of resistance to this insecticide in field populations.  相似文献   

9.
10.
Abstract Due to the risk of extinction and ornamental value of the swallowtail butterfly, Sericinus montelus Gray (Lepidoptera: Papilionidae) in China, knowledge about local adaptations is important for the conservation and economical utilization of the species. In the present study, photoperiodic diapause induction and diapause intensity of S. montelus populations from Jiamusi (46°37′N), Beijing (40°15′N), Zibo (36°48′N), Fangxian (32°36′N), Wuhan (30°33′N) and Huaihua (27°33′N) were characterized at 25°C. Logistic regression analysis revealed a significant population × hours of light interaction, confirming that photoperiodic responses varied among populations. The critical photoperiod was positively correlated with latitude and increased toward the north at a rate of about 1 h for each 6.67 degrees of latitude. Survival analyses indicated that survival time of diapausing pupae before adult eclosion differed significantly among populations at 25°C and 16 : 8 L : D h. The mean duration of pupal diapause was also positively correlated with latitude. Our study reveals geographic variation in the critical photoperiod for diapause induction and in diapause intensity of S. montelus. These results provide useful information for our general understanding about seasonal adaptation in insects and may also be used to predict how geographic populations respond to climate warming.  相似文献   

11.
To investigate geographic adaptation of the migratory locust Locusta migratoria in China, locusts were collected from six localities, ranging from 47.4°N to 19.2°N. Using offspring from the various populations, we compared embryonic diapause, reproductive traits, cold‐hardiness and adult body size. The incidence of embryonic diapause was influenced by the genetic makeup, parental photoperiod, and incubation temperature of the eggs. The northern strain (47.4°N) produced diapause eggs under all photoperiodic conditions, whereas the other strains produced a higher proportion of diapause eggs when exposed to a short photoperiod. The incubation temperature greatly influenced diapause induction. At a low temperature, all eggs entered diapause, even some of those from a tropical strain (19.2°N) in which no diapause was induced at high temperatures. Photoperiodic changes during the parental generation affected the incidence of embryonic diapause. Diapause intensity decreased with decreasing original latitude. Cold hardiness was compared by exposing eggs in diapause to either ?10 or ?20°C for various periods; the northern strain was more cold‐hardy than the southern strain, although some eggs in the tropical strain were probably not in a state of diapause. Adult body size and head width showed a complicated pattern of variation along the latitudinal gradient, whereas egg pod size (egg pod width and egg number) and hatchling weight tended to decrease with decreasing latitude. These results reveal that L. migratoria has adapted to local environments and that the latitudinal gradient appears to play an important role in shaping L. migratoria life cycle and development.  相似文献   

12.
A photoperiodically-controlled diapause of the long-day, short-day type was identified in a brown-winged, yellow-eyed strain of Ephestia cautella (Walker). The proportion of larvae diapausing in very long photoperiods was less than in short photoperiods. The mean critical photoperiod, here defined as that photoperiod giving half the maximum percentage of insects that diapause in response to photoperiod at a given temperature, was between 12 and 13 hr for the long-day reaction at both 20 and 25°C. The principal sensitive phase occurred near the time of the last larval moult. The mean duration of diapause was 2–3 months at 20°C and slightly longer at 25°C. The optimum temperature for diapause development was near 15°C, all larvae pupating within 24 days after a 45-day exposure at this temperature. Diapause could be terminated whenever larvae diapausing at 20°C were exposed to as few as five long (15 hr) photoperiods at 25°C. Long photoperiods at 20°C, or short photoperiods (9 hr) at 25°C were less effective in terminating diapause.  相似文献   

13.
Abstract

Photoperiodic insects are able to distinguish between long days and short days. In various models the long day response is classifically considered the “actively” induced state. The short day response is thought to be “passive”, caused by failure of light to coincide with a photosensitive part of the night or failure of coincidence of constituent oscillators. The photoperiodic response curve of Pieris brassicae showed that diapause is induced by short days (4–14 h), and non‐diapause state by several conditions (natural and non‐natural): long days (16 h or more), LL, DD and ultrashort days (0.1 h). By reciprocal transfers of larvae between non‐diapausing determining and diapause determining conditions, it was proved possible to estimate the differential capacity of four non‐diapausing conditions vs. the diapausing action of LD 8: 16 in decreasing sequence: LD 16:8 > LL > DD = LD 0.1: 23.9. DD may be considered a “neutral” condition. In darkness the development seems to be determined by an endogenous program without external influence. LL, although beingan aperiodic signal as DD, has a weak antidiapausingeffect.Thebiological clock of Pieris differentiates between two constant conditions. The four non‐diapausing conditions have the same effect on the development when applied during the entire larval life, but have different effects when only applied during a few days. Both ecological conditions LD 16:8 and LD 8:16 have an action on the development but in an opposite way. There was not a “passive” state caused by failure of another inductive photoperiod. Ultra‐short days, DD and LL are without ecological meaning. Nevertheless, in these experiments, they provided informations in attempts to determine the mechanism of the time measurement. The external coincidence model of Pittendrigh and Minis (1964) was the more adequate to explain theearlier results on the biological clock of Pieris. However, this model has to be modified to account for the differential significance of several non‐diapausing conditions.  相似文献   

14.
For insight into the physiological indicators of diapause in Pieris melete, water and carbohydrate (glycogen and trehalose) levels were measured under both natural and laboratory conditions. The highest water content (3.71–3.79 mg/mg dry weight) was found in larvae and developing pupae, which was substantially higher than in diapausing pupae (2.59 mg/mg dry weight). Water content was almost stable during diapause, except for individuals approaching diapause termination (3.43–3.58 mg/mg dry weight). The total carbohydrate level was significantly higher in pre‐pupae (47.41 μg/mg) compared to larvae (22.80 μg/mg) and developing pupae (21.48 μg/mg). The highest level of trehalose was detected in winter diapausing pupae, and no trehalose was found in larvae or developing pupae. Levels of glycogen were highest in pre‐pupae and lowest in diapausing pupae. Levels of total carbohydrate decreased as diapause proceeded, and no significant changes were found in trehalose levels for diapausing pupae under natural conditions or treated for 60–90 days at 5°C. Pupae treated at 20°C for 60–90 days had significantly lower levels of trehalose than those treated for 30 days. Glycogen content was relatively stable at 5°C, but increased after treatment under natural conditions and 20°C for more than 60 days. These results suggest that the dynamics of water and carbohydrate levels are potential physiological diapause indicators, which show metabolic differences between trehalose and glycogen during diapause development.  相似文献   

15.
Abstract A proportion of Helicoverpa armigera collected from fields in Okayama Prefecture (Western Japan; 34.6°N, 134.1°E) does not enter diapause when reared under a short days at 20 °C during the larval stages. However, diapause in such photo‐insensitive individuals can be induced when they are reared at moderately low temperatures, such as 15 °C, regardless of photoperiod. To determine whether such photo‐insensitive individuals can survive overwintering in fields, the present study compares the cold hardiness and sugar content between nondiapausing and diapausing pupae of photo‐insensitive individuals selected over several generations at 20 °C under a short day photoperiod (LD 10 : 14 h). Diapausing and nondiapausing pupae are obtained under the short days by rearing at 15 and 20 °C, respectively, during larval and pupal stages. These pupae are stepwise acclimated at a reduction of 5 °C every 5 days to 0 °C. Maximum survival periods of nondiapausing and diapausing pupae at 0 °C are approximately 30 and 90 days, respectively. Trehalose content in diapausing pupae increases, reaches a maximum level (1.95 mg 100 mg?1 in males and 2.1 mg 100 mg?1 in females) 28 days after exposure to 0 °C and then decreases. On the other hand, glucose content in diapausing pupae increases (maximum level: 0.32 mg 100 mg?1 in males and 0.21 mg 100 mg?1 in females) with decreasing trehalose content 42 days after exposure to 0°C. The decrease in trehalose content and the increase in glucose content may be linked to termination of diapause in H. armigera. These results suggest that, in Japan, the photo‐insensitive individuals can only survive in the mild winters of southern regions, and not in the severe winters of northern regions.  相似文献   

16.
The role of photoperiod and temperature in the induction of overwintering diapause inPhyllonorycter blancardella (F.) (Lepidoptera: Gracillariidae) was examined in the laboratory and field using leafminers from commercial apple orchards in Ontario, Canada.P. blancardella exhibited a long-day response to photoperiod: long daylengths resulted in uninterrupted development whereas short daylengths induced diapause. The estimated critical photoperiod for diapause induction was L14.25∶D9.75. The larvae of leafminers destined to enter diapause took ca. 3× longer to complete development than the larvae of non-diapausing leafminers. The development prolonging effect of photoperiod decreased with decreasing daylength. Temperature modified the diapause inducing effect of photoperiod. At L14.25∶D9.75, diapause incidence was similar at 15 and 20°C but was lower at 25°C. Photoperiod also altered the normal relationship between development rate and temperature. At L14.25∶D9.75, the duration of larval development of diapausing leafminers was similar at 15, 20 and 25°C. Temperature alone is unlikely to have a role in the induction of diapause because leafminers exposed to natural late summer and fall temperature regimes and L16∶D8 did not enter diapause.  相似文献   

17.
Abstract. Recombinant inbred lines were produced from hybrids between diapausing and non-diapausing strains of Drosophila triauraria Bock & Wheeler by twenty generations of full-sib mating. The analysis of these inbred lines suggests that the difference in the photoperiodic response between the original diapausing and non-diapausing strains is due to genes at three or four loci and at least one of these loci is located on the X chromosome. The original diapausing strain and two inbred lines exhibited circadian peaks when subjected to the Nanda-Hamner protocol, although they had different critical daylengths. This suggests that critical daylength is modified independently of the circadian oscillation system in this species. On the other hand, diapause duration was correlated with critical daylength among the inbred lines and the original diapausing strain, suggesting that these two traits are under the control of the same genetic system.  相似文献   

18.
19.
The effect of daylength and temperature on the regulation of the larval diapause of a central Missouri population of the sunflower moth, Homoeosoma electellum, was examined. Fully grown fourth-instar larvae exhibit a facultative diapause. Measurements of the effect of photoperiod on diapause induction revealed critical photoperiods of about 13 h 30 min light/day at 20°C, and between 11 h 45 min and 12 h light/day at 23°C. Third and fourth-instar larvae were shown to be the main sensitive stages for diapause determination. Daylength was also shown to be an important regulator of the rate of diapause development. A short day of LD 10:14 h permitted only a low rate of diapause development, whereas long days of LD 14:10 h and LD 16:8 h accelerated diapause development at 25 and 30°C. When long days were alternated with short days at 30°C the accelerating effect of long days on diapause development was not found. Systematic transfers of chilled diapausing larvae revealed an accelerated diapause development in groups transferred from 10 to 30°C LD 10:14 h, but diapause development was not accelerated in groups transferred from 10 to 30°C LD 16:8 h.  相似文献   

20.
Three methods of short-term storage of the blowfly Calliphora vicina strains are considered based on the experimental study of 21 strains originating from different parts of the species range. The colony can be preserved as diapausing adults at 6° and darkness for 2–3 months or more, depending on the geographical origin of the population. During the first five days of adult life the flies should be kept at 12° and short day on a sugar diet, after which they should be transferred into a refrigerator. During artificial hibernation the flies also require periodic sugar feeding every 20 days (3–4 h at 20°C) to maintain their vital functions. The combination of temperatures of 20–23°C and a protein diet terminates reproductive diapause, and oviposition starts in 10–17 days. The fly strain may be preserved as reproductive females at 6°C and darkness with sugar feeding. Flies also require periodic sugar feeding at 20°C (3–4 hours). In this case the flies start laying eggs 2–3 days after being transferred to 20–23°C. The preservation of diapausing larvae is a more reliable method of prolonged strain storage. In this case the flies of maternal generation are maintained at 20–23°C on sugar and protein diet. The egg rafts laid during 5–6 hours are then transferred into 12°C and short day until hatchment. The hatched larvae should be immediately placed into a refrigerator (2–3 or 5–6°C), where they feed during 1–1.5 months and enter diapause. For strain restoration, the diapausing larvae should be transferred into 20–25°C, where they pupariate in 3–5 days and the flies emerge in nearly 10 days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号