首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have used human apolipoprotein cDNAs as hybridization probes to study the relative abundance and distribution of apolipoprotein mRNAs in rabbit tissues by RNA blotting analysis. The tissues surveyed included liver, intestine, lung, pancreas, spleen, stomach, skeletal muscle, testis, heart, kidney, adrenal, aorta, and brain. We found that liver is the sole or major site of synthesis of apoA-II, apoA-IV, apoB, apoC-I, apoC-II, apoC-III, and apoE, and the intestine is a major site of synthesis of apoA-I, apoA-IV, and apoB. Minor sites of apolipoprotein mRNA synthesis were as follows: apoA-I, liver and skeletal muscle; apoA-IV, spleen and lung; apoB, kidney; apoC-II and apoC-III, intestine. ApoE mRNA was detected in all tissues surveyed with the exception of skeletal muscle. Sites with moderate apoE mRNA (10% of the liver value) were lung, brain, spleen, stomach, and testis. All rabbit mRNAs had forms with sizes comparable to their human counterparts. In addition, hybridization of hepatic and intestinal RNA with human apoA-IV and apoB probes produced a second hybridization band of approximately 2.4 and 8 kb, respectively. Similarly, hybridization of rabbit intestinal RNA with human apoC-II produced a hybridization band of 1.8 kb. The 8 kb apoB mRNA form may correspond to the apoB-48 mRNA, whereas the apoA-IV- and apoC-II-related mRNA species have not been described previously. This study provides a comprehensive survey of the sites of apolipoprotein gene expression and shows numerous differences in both the abundance and the tissue distribution of several apolipoprotein mRNAs between rabbit and human tissues. These findings and the observation of potentially new apolipoprotein mRNA species are important for our understanding of the cis and trans acting factors that confer tissue specificity as well as factors that regulate the expression of apolipoprotein genes in different mammalian species.  相似文献   

4.
In this study, we explored the paradox that in suckling rats the serum concentration of LDL is high although the liver secretes only minimal quantities of VLDL, the presumed precursor of LDL. Freshly isolated hepatocytes and hepatocytes in primary culture obtained from adult (90 days old) and suckling (17 days old) rats were used to investigate the synthesis and secretion of apolipoprotein B (apoB) and lipids as well as the density profile of secreted apoB-containing lipoproteins. Furthermore, the effects of dexamethasone and oleate on apoB biogenesis were investigated in primary cultures of hepatocytes from adult and suckling rats. Hepatocytes from suckling rats were unable to assemble mature VLDL but secreted apoB as primordial lipoprotein particles in the LDL-HDL density range. Intracellular degradation of apoB was also reduced in hepatocytes from suckling rats compared with that in hepatocytes from adults. The immaturity in VLDL assembly and apoB degradation of hepatocytes from suckling rats could be overcome by treating the cultures with dexamethasone plus oleate or dexamethasone alone. The lower microsomal triacylglycerol transfer protein (MTP) mRNA concentrations in hepatocytes from suckling rats in comparison with hepatocytes from adult rats were not reflected in lower MTP activity levels. Furthermore, dexamethasone plus oleate treatment had no effect on MTP activity although VLDL assembly and secretion were clearly stimulated. We conclude that, during the suckling period of the rat, serum LDL is directly produced by the liver. This is a result of impaired hepatic VLDL assembly, which is a consequence of low triglyceride synthesis and an inefficient mobilization of bulk lipids in the second step of VLDL assembly.  相似文献   

5.
Regulatory mechanisms of hepatic apolipoprotein synthesis were studied in groups of male Sprague-Dawley rats made severely hypolipidemic by treatment with pharmacological doses of 17 alpha-ethinyl estradiol. Treatment resulted in a marked reduction of plasma cholesterol and apolipoproteins B, A-I, and A-IV. Hepatic apoA-I mRNA and apoA-I synthesis were increased in the ethinyl estradiol-treated animals. Hepatic apoA-IV protein synthesis rates were unaltered; however, a reduction of the apoA-IV mRNA level was observed. Diet-control studies suggested the effects of 17 alpha-ethinyl estradiol on apoA-I, unlike those on apoA-IV, appeared to be related to the steroid and not to reduced caloric intake. Livers of control and ethinyl estradiol-treated rats synthesized both apoBH and apoBL. Total hepatic apoB (apoBL plus apoBH) synthesis and apoB mRNA levels in the ethinyl estradiol-treated rats were similar to ad libitum fed or diet-controls. In ad libitum fed and diet-control rats, 21% and 32%, respectively, of newly synthesized hepatic apoB was apoBH. In contrast, 47% of the newly synthesized apoB in the ethinyl estradiol-treated animal was apoBH. Nucleotide sequence analysis of hepatic apoB mRNA confirmed a marked decrease in the proportion of the apoBL mRNA in ethinyl estradiol-treated animals. After cessation of 17 alpha-ethinyl estradiol treatment, the hepatic apolipoprotein A-I synthesis rate, apolipoprotein A-I and A-IV mRNA levels, and the apoBH and apoBL synthesis rates, as well as plasma apolipoprotein and cholesterol levels, returned to normal. A major finding of the present study is that pharmacological doses of ethinyl estradiol do not affect total hepatic apoB synthesis, but increase the relative amount of apoBH synthesized.  相似文献   

6.
The effects of the long-term administration of the dietary fats coconut oil and corn oil at 31% of calories with or without 0.1% (wt/wt) dietary cholesterol on plasma lipoproteins, apolipoproteins (apo), hepatic lipid content, and hepatic apoA-I, apoB, apoE, and low density lipoprotein (LDL) receptor mRNA abundance were examined in 27 cebus monkeys. Relative to the corn oil-fed animals, no significant differences were noted in any of the parameters of the corn oil plus cholesterol-fed group. In animals fed coconut oil without cholesterol, significantly higher (P less than 0.05) plasma total cholesterol (145%), very low density lipoprotein (VLDL) + LDL (201%) and high density lipoprotein (HDL) (123%) cholesterol, apoA-I (103%), apoB (61%), and liver cholesteryl ester (263%) and triglyceride (325%) levels were noted, with no significant differences in mRNA levels relative to the corn oil only group. In animals fed coconut oil plus cholesterol, all plasma parameters were significantly higher (P less than 0.05), as were hepatic triglyceride (563%) and liver apoA-I (123%) and apoB (87%) mRNA levels relative to the corn oil only group, while hepatic LDL receptor mRNA (-29%) levels were significantly lower (P less than 0.05). Correlation coefficient analyses performed on pooled data demonstrated that liver triglyceride content was positively associated (P less than 0.05) with liver apoA-I and apoB mRNA levels and negatively associated (P less than 0.01) with hepatic LDL receptor mRNA levels. Liver free and esterified cholesterol levels were positively correlated (P less than 0.05) with liver apoE mRNA levels and negatively correlated (P less than 0.025) with liver LDL receptor mRNA levels. Interestingly, while a significant correlation (P less than 0.01) was noted between hepatic apoA-I mRNA abundance and plasma apoA-I levels, no such relationship was observed between liver apoB mRNA and plasma apoB levels, suggesting that the hepatic mRNA of apoA-I, but not that of apoB, is a major determinant of the circulating levels of the respective apolipoprotein. Our data indicate that a diet high in saturated fat and cholesterol may increase the accumulation of triglyceride and cholesterol in the liver, each resulting in the suppression of hepatic LDL receptor mRNA levels. We hypothesize that such elevations in hepatic lipid content differentially alter hepatic apoprotein mRNA levels, with triglyceride increasing hepatic mRNA concentrations for apoA-I and B and cholesterol elevating hepatic apoE mRNA abundance.  相似文献   

7.
Insulin-resistant states are characterized by hypertriglyceridemia, predominantly because of overproduction of hepatic very low density lipoprotein particles. The additional contribution of intestinal lipoprotein overproduction to the dyslipidemia of insulin-resistant states has not been previously appreciated. Here, we have investigated intestinal lipoprotein production in a fructose-fed hamster model of insulin resistance previously documented to have whole body and hepatic insulin resistance, and hepatic very low density lipoprotein overproduction. Chronic fructose feeding for 3 weeks induced significant oversecretion of apolipoprotein B48 (apoB48)-containing lipoproteins in the fasting state and during steady state fat feeding, based on (a) in vivo Triton WR1339 studies of apoB48 production as well as (b) ex vivo pulse-chase labeling of intestinal enterocytes from fasted and fed hamsters. ApoB48 particle overproduction was accompanied by increased intracellular apoB48 stability, enhanced lipid synthesis, higher abundance of microsomal triglyceride transfer protein mass, and a significant shift toward the secretion of larger chylomicron-like particles. ApoB48 particle overproduction was not observed with short-term fructose feeding or in vitro incubation of enterocytes with fructose. Secretion of intestinal apoB48 and triglyceride was closely linked to intestinal enterocyte de novo lipogenesis, which was up-regulated in fructose-fed hamsters. Inhibition of fatty acid synthesis by cerulenin, a fatty acid synthase inhibitor, resulted in a dose-dependent decrease in intestinal apoB48 secretion. Overall, these findings further suggest that intestinal overproduction of apoB48 lipoproteins should also be considered as a major contributor to the fasting and postprandial dyslipidemia observed in response to chronic fructose feeding and development of an insulin-resistant state.  相似文献   

8.
The overproduction of intestinal lipoproteins may contribute to the dyslipidemia found in diabetes. We studied the influence of diabetes on the fasting jejunal lipid content and its association with plasma lipids and the expression of genes involved in the synthesis and secretion of these lipoproteins. The study was undertaken in 27 morbidly obese persons, 12 of whom had type 2 diabetes mellitus (T2DM). The morbidly obese persons with diabetes had higher levels of chylomicron (CM) triglycerides (P < 0.001) and apolipoprotein (apo)B48 (P = 0.012). The jejunum samples obtained from the subjects with diabetes had a lower jejunal triglyceride content (P = 0.012) and angiopoietin-like protein 4 (ANGPTL4) mRNA expression (P = 0.043). However, the apoA-IV mRNA expression was significantly greater (P = 0.036). The jejunal triglyceride content correlated negatively with apoA-IV mRNA expression (r = −0.587, P = 0.027). The variables that explained the jejunal triglyceride content in a multiple linear regression model were the insulin resistance state and the apoA-IV mRNA expression. Our results show that the morbidly obese subjects with diabetes had lower jejunal lipid content and that this correlated negatively with apoA-IV mRNA expression. These findings show that the jejunum appears to play an active role in lipid homeostasis in the fasting state.  相似文献   

9.
The importance of insulin for the in vivo effects of growth hormone (GH) on lipid and lipoprotein metabolism was investigated by examining the effects of GH treatment of hypophysectomized (Hx) female rats with and without concomitant insulin treatment. Hypophysectomy-induced changes of HDL, apolipoprotein (apo)E, LDL, and apoB levels were normalized by GH treatment but not affected by insulin treatment. The hepatic triglyceride secretion rate was lower in Hx rats than in normal rats and increased by GH treatment. This effect of GH was blunted by insulin treatment. The triglyceride content in the liver changed in parallel with the changes in triglyceride secretion rate, indicating that the effect of the hormones on triglyceride secretion was dependent on changed availability of triglycerides for VLDL assembly. GH and insulin independently increased editing of apoB mRNA, but the effects were not additive. The expression of fatty-acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and sterol regulatory element-binding protein-1c (SREBP-1c) was increased by GH treatment. Insulin and GH had no additive effects on these genes; instead, insulin blunted the effect of GH on SREBP-1c mRNA. In contrast to the liver, adipose tissue expression of SREBP-1c, FAS, or SCD-1 mRNA was not influenced by GH. In conclusion, the increased hepatic expression of lipogenic enzymes after GH treatment may be explained by increased expression of SREBP-1c. Insulin does not mediate the effects of GH but inhibits the stimulatory effect of GH on hepatic SREBP-1c expression and triglyceride secretion rate.  相似文献   

10.
11.
Low density lipoprotein receptor (LDLR)-deficient mice fed a chow diet have a mild hypercholesterolemia caused by the abnormal accumulation in the plasma of apolipoprotein B (apoB)-100- and apoB-48-carrying intermediate density lipoproteins (IDL) and low density lipoproteins (LDL). Treatment of LDLR-deficient mice with ciprofibrate caused a marked decrease in plasma apoB-48-carrying IDL and LDL but at the same time caused a large accumulation of triglyceride-depleted apoB-100-carrying IDL and LDL, resulting in a significant increase in plasma cholesterol levels. These plasma lipoprotein changes were associated with an increase in the hepatic secretion of apoB-100-carrying very low density lipoproteins (VLDL) and a decrease in the secretion of apoB-48-carrying VLDL, accompanied by a significant decrease in hepatic apoB mRNA editing. Hepatic apobec-1 complementation factor mRNA and protein abundance were significantly decreased, whereas apobec-1 mRNA and protein abundance remained unchanged. No changes in apoB mRNA editing occurred in the intestine of the treated animals. After 150 days of treatment with ciprofibrate, consistent with the increased plasma accumulation of apoB-100-carrying IDL and LDL, the LDLR-deficient mice displayed severe atherosclerotic lesions in the aorta. These findings demonstrate that ciprofibrate treatment decreases hepatic apoB mRNA editing and alters the pattern of hepatic lipoprotein secretion toward apoB-100-associated VLDL, changes that in turn lead to increased atherosclerosis.  相似文献   

12.
Apolipoprotein B mRNA editing is developmentally regulated in the human and rodent small intestine, changing from <1% at day 14 to approximately 90% by day 20 in the rat fetus. This regulation is coincident with the developmental formation of the crypt-to-villus axis functional unit, a continuous and rapidly renewing system involving cell generation, migration, and differentiation. Utilizing small intestine isografts implanted into the subcutaneous tissue of adult recipients, apolipoprotein B mRNA editing was developmentally up-regulated, parallel to that seen with an intact control. In contrast, apoB mRNA expression remains nearly constant in the isograft, unlike the normal intact small intestine. Immunohistochemical analyses demonstrated that apoB-48 protein existed predominantly in well differentiated enterocytes along the villus surface whereas apoB-100 was in the lamina propria and crypts. ApoB mRNA editing levels were very low in the crypt-like rat intestinal cell line, IEC-6 ( approximately 0.3%), but very high in well differentiated enterocytes ( approximately 91.5%). The expression of homeobox gene Cdx1 increased 18-fold in small intestine in vivo during the same time course when apoB mRNA editing increased from approximately 2 to approximately 90%. The overexpression of Cdx1 in IEC-6 cells increased apoB mRNA editing over 10-fold compared with the vector control. This increase was associated with a significant increase of activating factor ACF, a component of the apoB mRNA editing complex. Taken together, these data suggest that the developmental regulation of apoB mRNA editing is an autonomous cytodifferentiation function of small intestine for which homeobox gene Cdx1 may play an important role.  相似文献   

13.
Chronic elevations of plasma apolipoprotein B (apoB) are strongly associated with cardiovascular disease. We have previously demonstrated that inhibition of hepatic apoB mRNA using antisense oligonucleotides (ASO) results in reductions of apoB, VLDL, and LDL in several preclinical animal models and humans. In this study, we evaluated the anti-atherogenic effects of a murine-specific apoB ASO (ISIS 147764) in hypercholesterolemic LDLr deficient (LDLr(-/-)) mice. ISIS 147764 was administered weekly at 25-100 mg/kg for 10-12 weeks and produced dose-dependent reductions of hepatic apoB mRNA and plasma LDL by 60-90%. No effects on these parameters were seen in mice receiving control ASOs. ApoB ASO treatment also produced dose-dependent reductions of aortic en face and sinus atherosclerosis from 50-90%, with high-dose treatment displaying less disease than the saline-treated, chow-fed LDLr(-/-) mice. No changes in intestinal cholesterol absorption were seen with apoB ASO treatment, suggesting that the cholesterol-lowering pharmacology of 147764 was primarily due to inhibition of hepatic apoB synthesis and secretion. In summary, ASO-mediated suppression of apoB mRNA expression profoundly reduced plasma lipids and atherogenesis in LDLr(-/-) mice, leading to the hypothesis that apoB inhibition in humans with impaired LDLr activity may produce similar effects.  相似文献   

14.
Fatty acids of varying lengths and saturation differentially affect plasma apolipoprotein B (apoB) levels. To identify the mechanisms underlying the effect of octanoate on very low-density lipoprotein (VLDL) secretion, chicken primary hepatocytes were incubated with either fatty acid-bovine serum albumin (BSA) complexes or BSA alone. Addition of octanoate to culture medium significantly reduced VLDL-triacylglycerol (TG), VLDL-cholesterol and apoB secretion from hepatocytes compared to both control cultures with BSA only and palmitate treatments, but did not modulate intracellular TG accumulation. However, no differences in cellular microsomal triglyceride transfer protein levels were observed in the cultures with saturated fatty acid. In pulse-chase studies, octanoate treatment resulted in reduced apoB-100 synthesis, in agreement with its promotion of secretion. This characteristic effect of octanoate was confirmed by addition of a protease inhibitor, N-acetyl-leucyl-leucyl-norleucinal (ALLN), to hepatocyte cultures. Analysis showed that the level of apoB mRNA was lower in cultures supplemented with octanoate than in the control cultures, but no significant changes were observed in the levels of apolipoprotein A-I, fatty acid synthase and 3-hydroxy-3-methylglutaryl-CoA reductase mRNA as a result of octanoate treatment. Time-course studies indicate that a 50% reduction in apoB mRNA levels requires 12 h of incubation with octanoate. We conclude that octanoate reduced VLDL secretion by the specific down-regulation of apoB gene expression and impairment of subsequent synthesis of apoB, not by the modulation of intracellular apoB degradation, which is known to be a major regulatory target of VLDL secretion of other fatty acids.  相似文献   

15.
Transforming growth factor-beta down-regulates apolipoprotein M in HepG2 cells   总被引:13,自引:0,他引:13  
Apolipoprotein M (apoM) is a novel apolipoprotein presented mostly in high-density lipoprotein (HDL) in human plasma, and is exclusively expressed in liver and in kidney. The pathophysiological function of apoM has not yet been elucidated. Apolipoprotein B (apoB), the characteristic apolipoprotein of low-density lipoprotein (LDL), is like apoM, a very hydrophobic protein, and thereafter they both must co-circulate with lipoprotein particles in plasma. The cytokine, transforming growth factor-beta (TGF-beta), has been shown to decreased apoB secretion in HepG2 cells, and we hypothesized that TGF-beta may have the same effects on apoM expression in HepG2 cells. In the present study, we used real-time RT-PCR to analyze apoM and apoB mRNA levels during administration of TGF-beta, as well as TGF-alpha, epidermal growth factor (EGF) and hepatic growth factor (HGF). TGF-beta significantly inhibited both apoM and apoB mRNA expression in HepG2 cells. The inhibitory effects of TGF-beta were dose-dependent, i.e. 1 ng/ml of TGF-beta decreased apoM mRNA levels by 30%, and 10 or 100 ng/ml of TGF-beta decreased apoM mRNA levels more than 65%. The effect of TGF-beta on apoB mRNA expression was slightly weaker than that of apoM, with a maximum effect at 10 or 100 ng/ml TGF-beta where apoB mRNA levels decreased about 55%. The inhibitory effects of TGF-beta on apoM and apoB mRNA levels also increased with increasing incubation time, where the maximum effect was obtained at 24 h. Moreover TGF-alpha, EGF and HGF all decreased both apoM and apoB mRNA levels, but to a less extent than TGF-beta. Further, all four cytokines had more pronounced effects on apoM mRNA expression than apoB mRNA expression. The present study suggested that apoM, like apoB, may be involved in the hepatic lipoprotein assembly in vivo.  相似文献   

16.
The corpulent JCR:LA-cp rat (cp/cp) is a useful model for study of the metabolic consequences of obesity and hyperinsulinemia. To assess the effect of hyperinsulinemia on VLDL secretion in this model, we measured rates of secretion of VLDL in perfused livers derived from cp/cp rats and their lean littermates. Livers of cp/cp rats secreted significantly greater amounts of VLDL triglyceride and apolipoprotein, compared with lean littermates. The content of apoB, apoE, and apoCs in both perfusate and plasma VLDL was greater in the cp/cp rat, as was the apolipoprotein (apo)C, apoA-I, and apoA-IV content of plasma HDL. Triglyceride content was also greater in cp/cp livers, as was hepatic lipogenesis and expression of lipogenic enzymes and sterol regulatory element binding protein-1 (SREBP-1). Hepatic mRNAs for apoE, and apoA-I were higher in livers of cp/cp rats. In contrast, the steady state levels of apoC-II, apoC-III, and apoB mRNAs were unchanged. Thus, livers of obese hyperinsulinemic cp/cp JCR:LA-cp rats secrete a greater number of VLDL particles that are enriched in triglyceride, apoE, and apoC. Greater secretion of VLDL in the cp/cp rat in part results from higher endogenous fatty acid synthesis, which in turn may occur in response to increased expression of the lipogenic enzyme regulator SREBP-1c.  相似文献   

17.
African green monkeys were fed diets containing low and moderate cholesterol concentrations with either polyunsaturated or unsaturated fat as 40% of calories. Plasma total cholesterol, low density lipoprotein (LDL) cholesterol, and apoB concentrations generally were higher in animals fed (a) the higher dietary cholesterol concentration and (b) saturated fat. At necropsy, liver and intestine were removed, and measurement of mRNAs for LDL receptors (liver) and for apolipoprotein B (liver and intestine) was done. Monkey small intestine mucosa made exclusively apoB48 while the liver made only apoB100, although apoB mRNA in both tissues was the same size (14 kilobases). No dietary cholesterol or fat effects were found for apoB mRNA abundance in the liver, while the animals fed the higher dietary cholesterol level had 50% lower levels of hepatic LDL receptor mRNA. In a separate group of animals, livers were perfused and the rate of apoB secretion was measured. No dietary fat effect on apoB secretion rate was found, and no relationship between plasma LDL cholesterol concentration and the rate of hepatic apoB production existed. These findings support the idea that the dietary factors that increase LDL concentrations act by reducing clearance of apoB-containing particles rather than by increasing production of these lipoproteins. Hepatic LDL receptor mRNA was similar in abundance in polyunsaturated fat and saturated fat-fed animals, suggesting that the difference in plasma cholesterol concentration between these groups is not mediated via effects on LDL receptor mRNA abundance. The level of intestinal apoB mRNA was about 30% higher in animals fed the moderate dietary cholesterol concentration. Earlier studies have shown that more cholesterol is transported in chylomicrons from the intestine when dietary cholesterol levels are higher, and the increased intestinal apoB mRNA abundance may reflect increased intestinal cholesterol transport and chylomicron apoB48 production.  相似文献   

18.
Normal histochemical analysis localizes apoA-IV within renal proximal tubules, which suggests that the kidney is a major catabolic site. In clinical renal failure and animal models of decreased renal function, low molecular weight proteins cannot be efficiently filtered through the glomerular basement membrane, and therefore they accumulate in plasma. In normal plasma, apoA-IV exists as both lipoprotein associated and lipoprotein-free, low molecular weight forms. To examine this further, uremic serum apolipoprotein and mRNA levels were examined in surgically 5/6 nephrectomized rats. Compared to sham-operated controls, uremic serum apoA-IV was elevated twofold and was distributed to a greater extent in the lipoprotein-free subfraction. Serum triglycerides were unchanged. Despite finding no correlation between serum apoA-IV and triglyceride levels (in either the d less than 1.006 g/ml or 1.006 less than d less than 1.019 g/ml fraction), serum apoA-IV was positively correlated with the renal function parameters of blood urea nitrogen (r = 0.949, P less than 0.001), creatinine (r = 0.952, P less than 0.001), and uric acid (r = 0.903, P less than 0.001). In addition, the concentration of apoA-IV per milligram of renal homogenate protein in uremic rats was significantly higher than that of control rats, whereas there was no difference in the content of apoA-I between the two groups. ApoA-I, apoA-IV, and apoB mRNA levels in hepatic and in intestinal tissue were undistinguishable between the uremic and surgical sham rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号