首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tau and gamma proteins of the DNA polymerase III holoenzyme DnaX complex are products of the dnaX gene with gamma being a truncated version of tau arising from ribosomal frameshifting. tau is comprised of five structural domains, the first three of which are shared by gamma (Gao, D., and McHenry, C. (2001) J. Biol. Chem. 276, 4433-4453). In the absence of the other holoenzyme subunits, DnaX exists as a tetramer. Association of delta, delta', chi, and psi with domain III of DnaX(4) results in a DnaX complex with a stoichiometry of DnaX(3)deltadelta'chipsi. To identify which domain facilitates DnaX self-association, we examined the properties of purified biotin-tagged DnaX fusion proteins containing domains I-II or III-V. Unlike domain I-II, treatment of domain III-V, gamma, and tau with the chemical cross-linking reagent BS3 resulted in the appearance of high molecular weight intramolecular cross-linked protein. Gel filtration of domains I-II and III-V demonstrated that domain I-II was monomeric, and domain III-V was an oligomer. Biotin-tagged domain III-V, and not domain I-II, was able to form a mixed DnaX complex by recruiting tau, delta, delta', chi, and psi onto streptavidin-agarose beads. Thus, domain III not only contains the delta, delta', chi, and psi binding interface, but also the region that enables DnaX to oligomerize.  相似文献   

2.
We have constructed a plasmid-borne artificial operon that expresses the six subunits of the DnaX complex of Escherichia coli DNA polymerase III holoenzyme: tau, gamma, delta, delta', chi and psi. Induction of this operon followed by assembly in vivo produced two taugamma mixed DnaX complexes with stoichiometries of tau(1)gamma(2)deltadelta'chipsi and tau(2)gamma(1)deltadelta'chipsi rather than the expected gamma(2)tau(2)deltadelta'chipsi. We observed the same heterogeneity when taugamma mixed DnaX complexes were reconstituted in vitro. Re-examination of homomeric DnaX tau and gamma complexes assembled either in vitro or in vivo also revealed a stoichiometry of DnaX(3)deltadelta'chipsi. Equilibrium sedimentation analysis showed that free DnaX is a tetramer in equilibrium with a free monomer. An assembly mechanism, in which the association of heterologous subunits with a homomeric complex alters the stoichiometry of the homomeric assembly, is without precedent. The significance of our findings to the architecture of the holoenzyme and the clamp-assembly apparatus of all other organisms is discussed.  相似文献   

3.
The delta' subunit of the DNA polymerase-III holoenzyme is a key component of the DnaX complex; it is required for loading the beta(2) processivity factor onto a primed template. The x-ray crystal structure of delta' indicates a three domain C-shaped structure (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localized the DnaX-binding domain of delta' to its carboxyl-terminal domain III by quantifying protein-protein interactions using a series of delta' fusion proteins lacking specific domains. The fusion protein corresponding to domain III of delta' bound to DnaX with an affinity approaching that of full-length delta'. In contrast, a construct bearing delta' domains I-II did not bind DnaX at detectable levels. The presence of delta and chi psi strengthened the interaction of DnaX with full-length delta' and delta' domain III. Thus, domain III of delta' not only contains the DnaX-binding site, but also contains the elements required for positive cooperative assembly of the DnaX complex. A domain III-specific anti-delta' monoclonal antibody interfered with DnaX complex formation and abolished the replication activity of DNA polymerase III holoenzyme.  相似文献   

4.
DNA polymerase III holoenzyme (holoenzyme) is the 10-subunit replicase of the Escherichia coli chromosome. In this report, pure preparations of delta, delta', and a gamma chi psi complex are resolved from the five protein gamma complex subassembly. Using these subunits and other holoenzyme subunits isolated from overproducing plasmid strains of E. coli, the rapid and highly processive holoenzyme has been reconstituted from only five pure single subunits: alpha, epsilon, gamma, delta, and beta. The preceding report showed that of the three subunits in the core polymerase, only a complex of alpha (DNA polymerase) and epsilon (3'-5' exonuclease) are required to assemble a processive holoenzyme on a template containing a preinitiation complex (Studwell, P.S., and O'Donnell, M. (1990) J. Biol. Chem. 265, 1171-1178). This report shows that of the five proteins in the gamma complex only a heterodimer of gamma and delta is required with the beta subunit to form the ATP-activated preinitiation complex with a primed template. Surprisingly, the delta' subunit does not form an active complex with gamma but forms a fully active heterodimer complex with the tau subunit (as does delta). Hence, the tau delta' and gamma delta heterodimers are fully active in the preinitiation complex reaction with beta and primed DNA. Holoenzymes reconstituted using the alpha epsilon complex, beta subunit, and either gamma delta or tau delta' are fully processive in DNA synthesis, and upon completing the template they rapidly cycle to a new primed template endowed with a preinitiation complex clamp. Since the holoenzyme molecule contains all of these accessory subunits (gamma, delta, tau, delta', and beta) in all likelihood it has the capacity to form two preinitiation complex clamps simultaneously at two primer termini. Two primer binding components within one holoenzyme may mediate its rapid cycling to multiple primers on the lagging strand and also provides functional evidence for the hypothesis of holoenzyme as a dimeric polymerase capable of simultaneous replication of both leading and lagging strands of a replication fork.  相似文献   

5.
The DnaX complex of the DNA polymerase holoenzyme assembles the beta(2) processivity factor onto the primed template enabling highly processive replication. The key ATPases within this complex are tau and gamma, alternative frameshift products of the dnaX gene. Of the five domains of tau, I-III are shared with gamma In vivo, gamma binds the auxiliary subunits deltadelta' and chipsi (Glover, B. P., and McHenry, C. S. (2000) J. Biol. Chem. 275, 3017-3020). To localize deltadelta' and chipsi binding domains within gamma domains I-III, we measured the binding of purified biotin-tagged DnaX proteins lacking specific domains to deltadelta' and chipsi by surface plasmon resonance. Fusion proteins containing either DnaX domains I-III or domains III-V bound deltadelta' and chipsi subunits. A DnaX protein only containing domains I and II did not bind deltadelta' or chipsi. The binding affinity of chipsi for DnaX domains I-III and domains III-V was the same as that of chipsi for full-length tau, indicating that domain III contained all structural elements required for chipsi binding. Domain III of tau also contained deltadelta' binding sites, although the interaction between deltadelta' and domains III-V of tau was 10-fold weaker than the interaction between deltadelta' and full length tau. The presence of both delta and chipsi strengthened the delta'-C(0)tau interaction by at least 15-fold. Domain III was the only domain common to all of tau fusion proteins whose interaction with delta' was enhanced in the presence of delta and chipsi. Thus, domain III of the DnaX proteins not only contains the deltadelta' and chipsi binding sites but also contains the elements required for the positive cooperative assembly of the DnaX complex.  相似文献   

6.
Using psi-BLAST, we have developed a method for identifying the poorly conserved delta subunit of the DNA polymerase III holoenzyme from all sequenced bacteria. This approach, starting with Escherichia coli delta, leads not only to the identification of delta but also to the DnaX and delta' subunits of the DnaX complex and other AAA(+)-class ATPases. This suggests that, although not an ATPase, delta is related structurally to the other subunits of the DnaX complex that loads the beta sliding clamp processivity factor onto DNA. To test this prediction, we aligned delta sequences with those of delta' and, using the start of delta' Domain III established from its x-ray crystal structure, predicted the juncture between Domains II and III of delta. This putative delta Domain III could be expressed to high levels, consistent with the prediction that it folds independently. delta Domain III, like Domain III of DnaX and delta', assembles by itself into a complex with the other DnaX complex components. Cross-linking studies indicated a contact of delta with the DnaX subunits. These observations are consistent with a model where two tau subunits and one each of the gamma, delta', and delta subunits mutually interact to form a pentameric functional core for the DnaX complex.  相似文献   

7.
Pol III, a subassembly of Escherichia coli DNA polymerase III holoenzyme lacking only the auxiliary beta subunit, was purified to homogeneity by an improved procedure. This assembly consists of nine different polypeptides, likely in a 1:1 stoichiometry: a catalytic core (pol III) of alpha (132 kDa), epsilon (27 kDa), and theta (10 kDa), and six auxiliary subunits: tau (71 kDa), gamma (52 kDa), delta (35 kDa), delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The assembly behaves on gel filtration as a particle of about 800 kDa, indicating a content of two each of the subunits. A new procedure for purifying the core yielded a novel dimeric form which may provide the foundation for the dimeric nature of the more complex pol III and holoenzyme forms. Pol III readily dissociates into several subassemblies including pol III', likely a dimeric core with two tau subunits. The holoenzyme, purified by a similar procedure with ATP and Mg2+ present throughout, retained the beta subunit (37 kDa) as well as all the subunits present in pol III; the mass of the holoenzyme was estimated to be 900 kDa. The isolated initiation complex of holoenzyme with a primed template DNA and the elongation complex (formed in the presence of three deoxynucleoside triphosphates) had the same composition and stoichiometry as observed for pol III with two beta dimers in addition. An initiation complex assembled from a mixture of monomeric pol III core, gamma 2 delta delta' chi psi complex (gamma complex), beta, and tau retained the core, one beta dimer, and two tau subunits but was deficient in the gamma complex. When tau was omitted from the assembly mixture, the initiation complex contained one or two gamma complexes instead of the tau subunit. Based on these data, pol III holoenzyme is judged to be an asymmetric dimeric particle with twin pol III core active sites and two different sets of auxiliary units designed to achieve essentially concurrent replication of both leading and lagging strand templates.  相似文献   

8.
Processive DNA synthesis, a property of DNA polymerase III holoenzyme of Escherichia coli, was not achieved by combining the pol III core (alpha, epsilon, and theta subunits) and the beta and gamma subunits. An activity that restored processivity to these subunits was found in crude extracts and was overproduced 4-fold in cells with plasmids amplifying the tau and gamma subunits. Purified to homogeneity, the activity, assayed by reconstitution of processivity, was represented by five polypeptides which were copurified. Judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, these correspond to the known subunits gamma (52 kDa) and delta (35 kDa) and to three new polypeptides: delta' (33 kDa), chi (15 kDa), and psi (12 kDa). The five polypeptides form a tight complex with a native molecular weight of about 200 kDa and a subunit stoichiometry of two gamma subunits to one each of the others. Processive DNA synthesis, now achieved with only three components (pol III core, beta, and the auxiliary complex), provides the opportunity to assess the functions of each and the contribution that the remaining auxiliary tau subunit makes to reconstitute a holoenzyme.  相似文献   

9.
delta and delta' are required for assembly of the processivity factor beta(2) onto primed DNA in the DNA polymerase III holoenzyme-catalyzed reaction. We developed protocols for generating highly purified preparations of delta and delta'. In holoenzyme reconstitution assays, delta' could not be replaced by delta, tau, or gamma, even when either of the latter were present at a 10,000-fold molar excess. Likewise, delta could not be replaced by delta', tau, or gamma. Bacterial strains bearing chromosomal knockouts of either the holA(delta) or holB(delta') genes were not viable, demonstrating that both delta and delta' are essential. Western blots of isolated initiation complexes demonstrated the presence of both delta and delta'. However, in the absence of chipsi and single-stranded DNA-binding protein, a stable initiation complex lacking deltadelta' was isolated by gel filtration. Lack of delta-delta' decreased the rate of elongation about 3-fold, and the extent of processive replication was significantly decreased. Adding back delta-delta' but not chipsi, delta, or delta' alone restored the diminished activity, indicating that in addition to being key components required for the beta loading activity of the DnaX complex, deltadelta' is present in initiation complex and is required for processive elongation.  相似文献   

10.
The gamma complex (gamma delta delta' chi psi) subassembly of DNA polymerase III holoenzyme transfers the beta subunit onto primed DNA in a reaction which requires ATP hydrolysis. Once on DNA, beta is a "sliding clamp" which tethers the polymerase to DNA for highly processive synthesis. We have examined beta and the gamma complex to identify which subunit(s) hydrolyzes ATP. We find the gamma complex is a DNA dependent ATPase. The beta subunit, which lacks ATPase activity, enhances the gamma complex ATPase when primed DNA is used as an effector. Hence, the gamma complex recognizes DNA and couples ATP hydrolysis to clamp beta onto primed DNA. Study of gamma complex subunits showed no single subunit contained significant ATPase activity. However, the heterodimers, gamma delta and gamma delta', were both DNA-dependent ATPases. Only the gamma delta ATPase was stimulated by beta and was functional in transferring the beta from solution to primed DNA. Similarity in ATPase activity of DNA polymerase III holoenzyme accessory proteins to accessory proteins of phage T4 DNA polymerase and mammalian DNA polymerase delta suggests the basic strategy of chromosome duplication has been conserved throughout evolution.  相似文献   

11.
The 10 distinctive polypeptides of DNA polymerase III holoenzyme, purified as individual subunits or complexes, could be reconstituted to generate a polymerase with the high catalytic rate of the isolated intact holoenzyme. Functions and interactions of the subunits can be inferred from partial assemblies of the pol III core (alpha, epsilon, and theta subunits) with auxiliary subunits. The core possesses the polymerase and proofreading activities; the auxiliary subunits provide the core with processivity, the capacity to replicate long stretches of DNA without dissociating from the template. In a sequence of reconstruction steps, the beta subunit binds the primed template in an ATP-dependent manner through the catalytic action of a complex made up of the gamma, delta, delta', chi, and psi polypeptides. With the beta subunit in place, a processive polymerase is produced upon addition of the core. When the tau subunit is lacking, binding of polymerase to the primed template is less efficient and stable. The tau-less reconstituted polymerase is more prone to dissociation upon encountering secondary structures in the template in its path, such as a hairpin region in the single strand or a duplex region formed by a strand annealed to the template. With the tau subunit present, the interaction of the core.beta complex (the basic unit of a processive polymerase) with the primed template is strengthened. The tau-containing reconstituted polymerase can replicate DNA continuously through secondary structures in the template. The two distinctive kinds of processivity demonstrated by the tau-less and tau-containing reconstituted polymerases fit nicely into a scheme in which, organized as an asymmetric dimeric holoenzyme, the tau half is responsible for continuous synthesis of one strand, and the less stable half for discontinuous synthesis of the other.  相似文献   

12.
DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the beta sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of alpha (pol III catalytic subunit), beta (sliding clamp processivity factor), and the essential DnaX (tau/gamma), delta and delta' components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including delta-delta' interaction, deltadelta'-tau/gamma complex formation, and alpha-tau interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 degrees C, both with regard to initiation complex formation and processive DNA synthesis. The minimal Tth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 degrees C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.  相似文献   

13.
The delta and delta' subunits are essential components of the DNA polymerase III holoenzyme, required for assembly and function of the DnaX-complex clamp loader (tau2gammadeltadelta'chipsi). The x-ray crystal structure of delta' contains three structural domains (Guenther, B., Onrust, R., Sali, A., O'Donnell, M., and Kuriyan, J. (1997) Cell 91, 335-345). In this study, we localize the delta-binding domain of delta' to a carboxyl-terminal domain III by quantifying the interaction of delta with a series of delta' fusion proteins lacking specific domains. Purification and immobilization of the fusion proteins were facilitated by the inclusion of a tag containing hexahistidine and a short biotinylation sequence. Both NH2- and COOH-terminal-tagged full-length delta' were soluble and had specific activities comparable with that of native delta'. delta and delta' form a 1:1 heterodimer with a dissociation constant (K(D)) of 5 x 10(-7) m determined by equilibrium sedimentation. The K(D) determined by surface plasmon resonance was comparable. Domain III alone bound delta at an affinity comparable to that of wild type delta', whereas proteins lacking domain III did not bind delta. Using a panel of domain-specific anti-delta' monoclonal antibodies, we found that two of the domain III-specific monoclonal antibodies interfered with delta-delta' interaction and abolished the replication activity of DNA polymerase-III holoenzyme.  相似文献   

14.
DNA polymerase III holoenzyme is responsible for chromosomal replication in bacteria. The components and functions of Escherichia coli DNA polymerase III holoenzyme have been studied extensively. Here, we report the reconstitution of replicase activity by essential components of DNA polymerase holoenzyme from the pathogen Pseudomonas aeruginosa. We have expressed and purified the processivity factor (beta), single-stranded DNA-binding protein, a complex containing the polymerase (alpha) and exonuclease (epsilon) subunits, and the essential components of the DnaX complex (tau(3)deltadelta'). Efficient primer elongation requires the presence of alphaepsilon, beta, and tau(3)deltadelta'. Pseudomonas aeruginosa alphaepsilon can substitute completely for E. coli polymerase III in E. coli holoenzyme reconstitution assays. Pseudomonas beta and tau(3)deltadelta' exhibit a 10-fold lower activity relative to their E. coli counterparts in E. coli holoenzyme reconstitution assays. Although the Pseudomonas counterpart to the E. coli psi subunit was not apparent in sequence similarity searches, addition of purified E. coli chi and psi (components of the DnaX complex) increases the apparent specific activity of the Pseudomonas tau(3)deltadelta' complex approximately 10-fold and enables the reconstituted enzyme to function better under physiological salt conditions.  相似文献   

15.
Although the two alternative Escherichia coli dnaX gene products, tau and gamma, are found co-assembled in purified DNA polymerase III holoenzyme, the pathway of assembly is not well understood. When the 10 subunits of holoenzyme are simultaneously mixed, they rapidly form a nine-subunit assembly containing tau but not gamma. We developed a new assay based on the binding of complexes containing biotin-tagged tau to streptavidin-coated agarose beads to investigate the effects of various DNA polymerase III holoenzyme subunits on the kinetics of co-assembly of gamma and tau into the same complex. Auxiliary proteins in combination with delta' almost completely blocked co-assembly, whereas chipsi or delta' alone slowed the association only moderately compared with the interaction of tau with gamma alone. In contrast, DNA polymerase III core, in the absence of deltadelta' and chipsi, accelerated the co-assembly of tau and gamma, suggesting a role for DNA polymerase III' [tau(2)(pol III core)(2)] in the assembly pathway of holoenzyme.  相似文献   

16.
We previously reconstituted a minimal DNA replicase from Pseudomonas aeruginosa consisting of alpha and epsilon (polymerase and editing nuclease), beta (processivity factor), and the essential tau, delta, and delta' components of the clamp loader complex (Jarvis, T., Beaudry, A., Bullard, J., Janjic, N., and McHenry, C. (2005) J. Biol. Chem. 280, 7890-7900). In Escherichia coli DNA polymerase III holoenzyme, chi and Psi are tightly associated clamp loader accessory subunits. The addition of E. coli chiPsi to the minimal P. aeruginosa replicase stimulated its activity, suggesting the existence of chi and Psi counterparts in P. aeruginosa. The P. aeruginosa chi subunit was recognizable from sequence similarity, but Psi was not. Here we report purification of an endogenous replication complex from P. aeruginosa. Identification of the components led to the discovery of the cryptic Psi subunit, encoded by holD. P. aeruginosa chi and Psi were co-expressed and purified as a 1:1 complex. P. aeruginosa chiPsi increased the specific activity of tau(3)deltadelta' 25-fold and enabled the holoenzyme to function under physiological salt conditions. A synergistic effect between chiPsi and single-stranded DNA binding protein was observed. Sequence similarity to P. aeruginosa Psi allowed us to identify Psi subunits from several other Pseudomonads and to predict probable translational start sites for this protein family. This represents the first identification of a highly divergent branch of the Psi family and confirms the existence of Psi in several organisms in which Psi was not identifiable based on sequence similarity alone.  相似文献   

17.
The beta sliding clamp encircles DNA and tethers DNA polymerase III holoenzyme to the template for high processivity. The clamp loader, gamma complex (gamma 3 delta delta'chi psi), assembles beta around DNA in an ATP-fueled reaction. The delta subunit of the clamp loader opens the beta ring and is referred to as the wrench; ATP modulates contact between beta and delta among other functions. Crystal structures of delta.beta and the gamma 3 delta delta' minimal clamp loader make predictions of the clamp loader mechanism, which are tested in this report by mutagenesis. The delta wrench contacts beta at two sites. One site is at the beta dimer interface, where delta appears to distort the interface by via a steric clash between a helix on delta and a loop near the beta interface. The energy for this steric clash is thought to derive from the other site of interaction, in which delta binds to a hydrophobic pocket in beta. The current study demonstrates that rather than a simple steric clash with beta, delta specifically contacts beta at this site, but not through amino acid side chains, and thus is presumably mediated by peptide backbone atoms. The results also imply that the interaction of delta at the hydrophobic site on beta contributes to destabilization of the beta dimer interface rather than acting solely as a grip of delta on beta. Within the gamma complex, delta' is proposed to prevent delta from binding to beta in the absence of ATP. This report demonstrates that one or more gamma subunits also contribute to this role. The results also indicate that delta' acts as a backboard upon which the gamma subunits push to attain the ATP induced change needed for the delta wrench to bind and open the beta ring.  相似文献   

18.
In Escherichia coli, the circular beta sliding clamp facilitates processive DNA replication by tethering the polymerase to primer-template DNA. When synthesis is complete, polymerase dissociates from beta and DNA and cycles to a new start site, a primed template loaded with beta. DNA polymerase cycles frequently during lagging strand replication while synthesizing 1-2-kilobase Okazaki fragments. The clamps left behind remain stable on DNA (t(12) approximately 115 min) and must be removed rapidly for reuse at numerous primed sites on the lagging strand. Here we show that delta, a single subunit of DNA polymerase III holoenzyme, opens beta and slips it off DNA (k(unloading) = 0.011 s(-)(1)) at a rate similar to that of the multisubunit gamma complex clamp loader by itself (0.015 s(-)(1)) or within polymerase (pol) III* (0.0065 s(-)(1)). Moreover, unlike gamma complex and pol III*, delta does not require ATP to catalyze clamp unloading. Quantitation of gamma complex subunits (gamma, delta, delta', chi, psi) in E. coli cells reveals an excess of delta, free from gamma complex and pol III*. Since pol III* and gamma complex occur in much lower quantities and perform several DNA metabolic functions in replication and repair, the delta subunit probably aids beta clamp recycling during DNA replication.  相似文献   

19.
Studies of the DNA polymerase III holoenzyme of Escherichia coli support a model in which both the leading and lagging strand polymerases are held together in a complex with the replicative helicase and priming activities, allowing two identical alpha catalytic subunits to assume different functions on the two strands of the replication fork. Creation of distinct functions for each of the two polymerases within the holoenzyme depends on the asymmetric character of the entire complex. The asymmetry of the holoenzyme is created by the DnaX complex, a heptamer that includes tau and gamma products of the dnaX gene. tau and gamma perform unique functions in the DnaX complex, and the interaction between alpha and tau appears to dictate the catalytic subunit's role in the replicative reaction. This review considers the properties of the DnaX complex including both tau and gamma, with the goal of understanding the properties of the replicase and its function in vivo. Recent studies in eukaryotic and other prokaryotic systems suggest that an asymmetric dimeric replicase may be universal. The leading and lagging strand polymerases may be distinct in some systems. For example, Pol e and Pol delta may function as distinct leading and lagging strand polymerases in eukaryotes, and PolC and DnaE may function as distinct leading and lagging strand polymerases in low GC content Gram-positive bacteria.  相似文献   

20.
This report outlines the protein requirements and subunit organization of the DNA replication apparatus of Streptococcus pyogenes, a Gram-positive organism. Five proteins coordinate their actions to achieve rapid and processive DNA synthesis. These proteins are: the PolC DNA polymerase, tau, delta, delta', and beta. S. pyogenes dnaX encodes only the full-length tau, unlike the Escherichia coli system in which dnaX encodes two proteins, tau and gamma. The S. pyogenes tau binds PolC, but the interaction is not as firm as the corresponding interaction in E. coli, underlying the inability to purify a PolC holoenzyme from Gram-positive cells. The tau also binds the delta and delta' subunits to form a taudeltadelta' "clamp loader." PolC can assemble with taudeltadelta' to form a PolC.taudeltadelta' complex. After PolC.taudeltadelta' clamps beta to a primed site, it extends DNA 700 nucleotides/second in a highly processive fashion. Gram-positive cells contain a second DNA polymerase, encoded by dnaE, that has homology to the E. coli alpha subunit of E. coli DNA polymerase III. We show here that the S. pyogenes DnaE polymerase also functions with the beta clamp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号