首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA was isolated from polyribosomes of vesicular stomatitis virus (VSV)-infected cells and tested for its ability to direct protein synthesis in extracts of animal and plant cells. In cell-free, non-preincubated extracts of rabbit reticulocytes, the 28S VSV RNA stimulated synthesis of a protein the size of the vesicular stomatitis virus L protein whereas the 13 to 15S RNA directed synthesis of the VSV M, N, NS, and possibly G proteins. In wheat germ extracts, 13 to 15S RNA also directed synthesis of the N, NS, M, and possibly G proteins. Analysis of extracts labeled with formyl [(35)S]methionine showed that the 28S RNA directed the initiation of synthesis of one protein, whereas the 13 to 15S RNA directed initiation of at least four proteins. It is concluded that the 28S RNA encodes only the L protein, whereas the 13 to 15S RNA is a mixture of species, presumably monocistronic, which code for the four other known vesicular stomatitis virus proteins.  相似文献   

2.
The synthesis of individual proteins in the mouse plasmacytoma cell MPC-11 is differentially inhibited when the rate of polypeptide chain initiation is reduced by exposure of cells to hypertonic medium. The synthesis of immunoglobulin G light and heavy chain polypeptides is 3.5 to 4-fold and 1.5 to 2-fold more resistant, respectively, than the synthesis of non-immunoglobulin G proteins when total protein synthesis is reduced by ~90%. In contrast, when polypeptide chain elongation is inhibited, the synthesis of the light and heavy chains is not more resistant than the synthesis of non-immunoglobulin G proteins.The results with MPC-11 cells suggests that: (1) under standard growth conditions the relative synthesis of individual proteins is determined mainly, but not exclusively, by the relative amounts of the individual messenger RNA species present in the cell; (2) under conditions where the overall rate of polypeptide chain initiation is reduced the relative synthesis of individual proteins becomes more dependent upon the intrinsic ability of their corresponding mRNAs to form functional mRNA-ribosome initiation complexes.  相似文献   

3.
4.
5.
6.
7.
The effect of 4-deoxy-4-fluoro-D-mannose (4F-Man), a synthetic analog of D-mannose, on the synthesis of the glycoprotein (G) of vesicular stomatitis virus was examined. Nearly confluent monolayers of cultured BHK21 cells infected with vesicular stomatitis virus were incubated for 2 h with 4F-Man (0-10 mM) or for 1 h with tunicamycin (2 micrograms/ml) and then pulse-labeled with [35S]methionine or [3H]glucosamine. After a 90-min chase period, the cells were lysed and the viral proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography. The 35S-labeled G protein from cells exposed to greater than or equal to 1 mM 4F-Man migrated more rapidly than G protein isolated from control cells and with the same electrophoretic mobility as the glycoprotein produced by cells treated with tunicamycin. When infected cells were labeled with [3H]glucosamine, little or no radioactivity was associated with G protein synthesized in the presence of greater than or equal to 1 mM 4F-Man. The conclusion that 4F-Man blocks the glycosylation of the G protein was supported by experiments which demonstrated that the fluorosugar inhibits the synthesis of lipid-linked oligosaccharides.  相似文献   

8.
Addition of monensin or nigericin after poliovirus entry into HeLa cells prevents the inhibition of host protein synthesis by poliovirus. The infected cells continue to synthesize cellular proteins at control levels for at least 8 h after infection in the presence of the ionophore. Cleavage of p220 (gamma subunit of eukaryotic initiation factor 4 [eIF-4 gamma]), a component of the translation initiation factor eIF-4F, occurs to the same extent in poliovirus-infected cells whether or not they are treated with monensin. Two hours after infection there is no detectable intact p220, but the cells continue to translate cellular mRNAs for several hours at levels similar to those in uninfected cells. Nigericin or monensin prevented the arrest of host translation at all the multiplicities of poliovirus infection tested. At high multiplicities of infection, an unprecedented situation was found: cells synthesized poliovirus and cellular proteins simultaneously. Superinfection of vesicular stomatitis virus-infected HeLa cells with poliovirus led to a profound inhibition of vesicular stomatitis virus protein synthesis, while nigericin partially prevented this blockade. Drastic inhibition of translation also took place in influenza virus-infected Vero cells treated with nigericin and infected with poliovirus. These findings suggest that the translation of newly synthesized mRNAs is dependent on the integrity of p220, while ongoing cellular protein synthesis does not require an intact p220. The target of ionophore action during the poliovirus life cycle was also investigated. Addition of nigericin at any time postinfection profoundly blocked the synthesis of virus RNA, whereas viral protein synthesis was not affected if nigericin was added at 4 h postinfection. These results agree well with previous findings indicating that inhibitors of phospholipid synthesis or vesicular traffic interfere with poliovirus genome replication. Therefore, the action of nigericin on the vesicular system may affect poliovirus RNA synthesis. In conclusion, monensin and nigericin are potent inhibitors of poliovirus genome replication that prevent the shutoff of host translation by poliovirus while still permitting cleavage of p220.  相似文献   

9.
Incubation of vesicular stomatitis virus-infected glucose-starved baby hamster kidney cells with [35S]methionine results in the synthesis of all viral proteins. However, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and tryptic peptide mapping, the G protein is abnormally glycosylated. Metabolic labeling of the oligosaccharide-lipid precursors with [3H]mannose for 15 min, followed by Chromatographic and enzymatic analysis, indicates that the radiolabeled lipid-linked oligosaccharides are devoid of glucose in contrast to the glucosylated oligosaccharide-lipids synthesized by cells grown in the presence of glucose. Also, in contrast to control cells, examination of the glycopeptide fraction reveals the presence of [3H]mannose-labeled glycopeptides which are resistant to erado-β-N-acetylglucos-aminidase H and are smaller in size than glycopeptides from mature vesicular stomatitis virus. In order to observe these effects, a minimum time of 5 h of glucose deprivation is necessary and the addition of 55 μm glucose or mannose to the medium reverses these effects. These results indicate that vesicular stomatitis virus-infected BHK cells deprived of glucose are unable to glucosylate the oligosaccharide-lipid intermediates and, consequently, are unable to glycosylate the G protein normally.  相似文献   

10.
Five highly cytolytic strains of both Indiana and New Jersey serotypes of vesicular stomatitis virus were shown to induce cell fusion in BHK-21 and R(B77) cells. Inhibition of protein synthesis after the eclipse period of viral replication is a prerequisite for vesicular stomatitis virus-induced cell fusion. Pulse-chase experiments showed that inhibition of protein synthesis would lead to a drastic reduction in the intracellular pool of M protein as compared with other proteins. A temperature-sensitive mutant defective in M protein function (G31) was the only mutant of the five complementation groups to spontaneously induce polykaryocytes at the nonpermissive temperature. Previously, G protein has been shown to play a role in vesicular stomatitis virus-induced cell fusion. These results suggest that the combination of the presence of G protein on the virus-infected cell surface and the absence of functional M protein or a reduced level of intracellular M protein promotes cell fusion. On the basis of this study, we propose that vesicular stomatitis virus infection can induce cell fusion when the functional M protein pool declines to a critical level while G protein remains on the cell surface.  相似文献   

11.
Crude cytoplasmic extracts from vesicular stomatitis virus (VSV)-infected HeLa cells incorporate radioactive amino acids into hot trichloroacetic acid-precipitable material linearly for 10 to 20 min. The material synthesized in vitro corresponds in molecular weight to four of the five VSV structural proteins. However, synthesis of the viral glycoprotein (G) is significantly reduced, whereas the relative amounts of viral structural proteins L and NS synthesized are increased compared with the ratio of the proteins found in the virion. Fractionation of a VSV-infected crude cytoplasmic extract into a cytoplasmic pellet (20,000 x g for 30 min) and a cytoplasmic supernatant results in a significant reduction in protein synthesizing activity of both fractions, although both contain polysomes. The products synthesized by a cytoplasmic supernatant-directed system included all the VSV structural proteins except the glycoprotein, whereas in an in vitro system directed by the cytoplasmic pellet there is a marked reduction in synthesis of the nucleoprotein (N) and also a small relative increase in synthesis of the glycoprotein. Addition of uninfected, preincubated HeLa or L-cell S10 or a HeLa ribosomal fraction to the VSV-infected cytoplasmic pellet results in a 30- to 60-fold stimulation of (35)S-methionine incorporation. However, these uninfected extracts do not stimulate (35)S-methionine incorporation by the infected crude cytoplasmic extract or the cytoplasmic supernatant. The products synthesized by the stimulated cytoplasmic pellet now include sizeable amounts of the glycoprotein in addition to the other VSV structural proteins.  相似文献   

12.
13.
Infection of mouse myeloma (MPC-11) cells with vesicular stomatitis virus resulted in rapid loss in activity of cellular RNA polymerases associated with nuclear chromatin. No RNA polymerase inhibitor could be detected in extracts of infected cell nuclei. Reconstitution experiments with solubilized RNA polymerases dissociated from chromatin of infected and uninfected cells demonstrated that vesicular stomatitis viral infection did not affect the ability of the polymerases to function on endogenous or exogenous templates; nor did infection alter the template capability of the chromatin. Measurement of the number of actively growing RNA chains revealed that infected cell nuclei contained fewer active polymerase units; however, the rates of RNA chain elongation were the same in nuclei from infected and uninfected cells. Quantitation of the number of polymerase units active in nuclear chromatin revealed that the alpha-amantin-sensitive polymerase II was more severely reduced by viral infection than were polymerases I and III.  相似文献   

14.
Tumor hypoxia presents an obstacle to the effectiveness of most antitumor therapies, including treatment with oncolytic viruses. In particular, an oncolytic virus must be resistant to the inhibition of DNA, RNA, and protein synthesis that occurs during hypoxic stress. Here we show that vesicular stomatitis virus (VSV), an oncolytic RNA virus, is capable of replication under hypoxic conditions. In cells undergoing hypoxic stress, VSV infection produced larger amounts of mRNA than under normoxic conditions. However, translation of these mRNAs was reduced at earlier times postinfection in hypoxia-adapted cells than in normoxic cells. At later times postinfection, VSV overcame a hypoxia-associated increase in alpha subunit of eukaryotic initiation factor 2 (eIF-2alpha) phosphorylation and initial suppression of viral protein synthesis in hypoxic cells to produce large amounts of viral protein. VSV infection caused the dephosphorylation of the translation initiation factor eIF-4E and inhibited host translation similarly under both normoxic and hypoxic conditions. VSV produced progeny virus to similar levels in hypoxic and normoxic cells and showed the ability to expand from an initial infection of 1% of hypoxic cells to spread through an entire population. In all cases, virus infection induced classical cytopathic effects and apoptotic cell death. When VSV was used to treat tumors established in nude mice, we found VSV replication in hypoxic areas of these tumors. This occurred whether the virus was administered intratumorally or intravenously. These results show for the first time that VSV has an inherent capacity for infecting and killing hypoxic cancer cells. This ability could represent a critical advantage over existing therapies in treating established tumors.  相似文献   

15.
Translation of individual species of vesicular stomatitis viral mRNA.   总被引:34,自引:23,他引:11       下载免费PDF全文
D Knipe  J K Rose    H F Lodish 《Journal of virology》1975,15(4):1004-1011
Vesicular stomatitis virus mRNAs from three of the four bands fractionated by polyacrylamide gel electrophoresis in 99% formamide have been eluted from gels and translated in the Krebs II ascites cell-free system. Band 2 mRNA (0.7 times 10-6 daltons) directed the synthesis of the protein moiety of the glycoprotein (G), and band 3 (0.55 times 10-6 daltons) coded for the nucleocapsid (N) protein. Band 4 mRNA (o.28 times 10-6 daltons) directed the synthesis of the NS and matrix (M) proteins. The authenticity of viral proteins synthesized in vitro was shown by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by analysis of (35-S)metionine-labeled tryptic peptides. These results are consistent with the complexity analysis and coding capacities for the vesicular stomatitis virus mRNA species presented in the accompanying paper.  相似文献   

16.
Specificity of interferon action in protein synthesis.   总被引:5,自引:3,他引:2       下载免费PDF全文
Inhibitors of elongation steps in protein synthesis such as cycloheximide and anisomycin mimic interferon treatment in that they specifically inhibit the synthesis of certain viral proteins. These specific effects are seen only at very low concentrations of the antibiotics, under conditions where host cellular protein synthesis, as well as cell viability, are not severely reduced. A qualitatively as well as quantitatively close correlation between the effects of the two types of agents has been established for encephalomyocarditis virus, vesicular stomatitis virus and murine leukemia virus protein synthesis. It is concluded that one of the primary mechanisms of interferon action may be a nonspecific retardation of one or more elongation steps, and that this may be sufficient to account for its effects on the replication of certain viruses such as encephalomyocarditis and vesicular stomatitis viruses.  相似文献   

17.
A method is described for analysis of viral protein synthesis early after infection when minute amounts of viral proteins are effectively concealed by large amounts of produced host-specific proteins. The method is superior to a radioimmune assay, since all virus-induced proteins can be measured independent of their immunological reactivity. Host-specific protein synthesis can be suppressed by infection with fowl plague virus. Addition of actinomycin D 1.25 h postinfection does not prevent this suppression, but it does block effectively the formation of fowl plague virus-specific proteins. Such cells synthesize only small amounts of cellular proteins, as revealed by polyacrylamide electrophoresis. They can be superinfected with several different enveloped viruses, however, without significant diminution of virus yields. In pretreated cells the eclipse is shortened for Semliki Forest virus, Sindbis virus, and vesicular stomatitis virus, but prolonged for Newcastle disease virus. The onset of protein synthesis, specific for the superinfecting virus, could be clearly demonstrated within 1 h after superinfection. At this time, in cells superinfected with Semliki Forest virus, great amounts of NSP 78 (nonstructural protein; molecular weight, 78 × 103) and reduced amounts of the core protein C could be demonstrated. The precursor glycoprotein NSP 68 is followed by a new polypeptide, NSP 65; three proteins with molecular weights exceeding 100 × 103 were observed which are missing later in the infectious cycle. Similar results were obtained after superinfection with Sindbis virus. The formation of a new polypeptide with a molecular weight of about 80 × 103 was detected. After superinfection with vesicular stomatitis virus or Newcastle disease virus the formation of new proteins, characteristic for the early stage of infection, was not observed.  相似文献   

18.
The topography of polysomal ribosomes in mock-infected and in Sindbis virus- and vesicular stomatitis virus-infected BHK cells was investigated using a double, radioactive labelling technique. Ribosomal proteins in intact polysomes were surface labelled by reductive methylation using [14C]formaldehyde. Following removal of ribosomal RNA, proteins were denatured in 6 M guanidine and labelled with [3H]borohydride. Labelled ribosomal proteins were separated by electrophoresis in two-dimensional gels and the 3H/14C ratio for each ribosomal protein was taken as an index of its relative surface exposure in intact ribosomes. Comparison of the ratios for individual ribosomal proteins in Sindbis virus-infected vs. control polysomes indicated that proteins L7, L8, L17, L26 and S19 became more 'buried' and others such as L4, L29, L36, S2 and S26 became more 'exposed' in infected cells. Most of the topographical alterations occurred in the large ribosomal subunit. In contrast, infection of BHK cells with vesicular stomatitis virus induced little or no topographical alteration.  相似文献   

19.
20.
The effect of interferon on the expression of the vesicular stomatitis virus glycoprotein G gene was examined in simian COS cells transfected with the expression vector pSVGL containing the G gene under the control of the SV40 late promoter. When COS cells were treated with interferon 24 h after transfection, the synthesis of vesicular stomatitis virus G protein was inhibited by about 80% as compared to that in untreated controls. By contrast, under the same conditions, neither the plasmid copy number nor the G gene mRNA levels were detectably affected by interferon treatment. Likewise, the synthesis of simian virus 40 large T-antigen was not inhibited by interferon treatment of transfected COS cells even though the synthesis of vesicular stomatitis virus G protein was markedly inhibited. The residual G protein synthesized in transfected, interferon-treated COS cells appeared to be normally glycosylated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号