首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Duchenne肌营养不良(Duchenne muscular dystrophy,DMD)为X连锁、隐性、致死性遗传病,其致病基因位于X染色体的Xp21.1-3区,编码抗肌萎缩蛋白dystrophin。随着对该病研究的不断深入,人们从宏观到微观对DMD的再认识不断更新,发现其发病涉及到从基因、胞膜缺陷,到细胞的炎性机制,以及纤维化及肌细胞再生等多个层面。就其细胞及亚细胞水平发病机制及治疗上的进展进行综述。  相似文献   

2.
Absence of MyoD Increases Donor Myoblast Migration into Host Muscle   总被引:2,自引:0,他引:2  
Donor myoblast migration is a major limiting factor in the success of myoblast transfer therapy, a potential treatment for Duchenne muscular dystrophy. A possible strategy to promote the migration of donor myoblasts into host muscle is to enhance their proliferation and delay their fusion, two properties that are major characteristics of myoblasts in regenerating skeletal muscle in MyoD null (-/-) mice. Here we investigate whether the migration of MyoD (-/-) donor myoblasts into host muscle is enhanced in vivo. Sliced muscle grafts from male MyoD (-/-) or normal control (Balb/c) mice were transplanted into the muscles of female normal (Balb/c) host mice. Muscles were sampled at 1, 3, and 12 weeks after grafting, and the fate of male donor myoblasts within female host muscles determined by in situ hybridization with the mouse Y-chromosome-specific Y-1 probe. MyoD (-/-) donor myoblasts migrated into host muscle continuously over 1, 3, and 12 weeks after grafting, in contrast with Balb/c donor myoblasts, whose overall numbers and migratory distances did not increase significantly after 1 week. These results strongly support a role for elevated donor myoblast proliferation and/or their delayed fusion in enhancing migration into host muscle in vivo, and endorse the use of either genetically engineered donor myoblasts, or the administration of exogenous myoblast mitogens to improve donor myoblast migration in myoblast transfer therapy.  相似文献   

3.

Background

Helper‐dependent, or gutted, adenoviruses (Ad) lack viral coding sequences, resulting in reduced immunotoxicity compared with conventional Ad vectors. Gutted Ad growth requires a conventional Ad to supply replication and packaging functions in trans. Methods that allow high‐titer growth of gutted vectors while reducing helper contamination, and which use safer helper viruses, will facilitate the use of gutted Ad vectors in vivo.

Methods

Replication‐defective helper viruses were generated that are deleted for Ad E1, E2b and E3 genes, but which contain loxP sites flanking the packaging signal. Complementing Ad packaging cell lines (C7‐cre cells) were also generated by transfecting 293 cells with the Ad E2b genes encoding DNA polymerase and pre‐terminal protein, and with a cre‐recombinase plasmid.

Results

We show that C7‐cre cells allow efficient production of gutted Ad using ΔE1 + ΔE2b + ΔE3 helper viruses whose growth can be limited by cre‐loxP‐mediated excision of the packaging signal. Gutted Ad vectors carrying ~28 kb cassettes expressing full‐length dystrophin were prepared at high titers, similar to those obtained with E2b+ helpers, with a resulting helper contamination of <1%.

Conclusions

These new packaging cell lines and helper viruses offer several significant advantages for gutted Ad vector production. They allow gutted virus amplification using a reduced number of passages, which should reduce the chances of selecting rearranged products. Furthermore, the residual helper contamination in gutted vector preparations should be less able to elicit immunological reactions upon delivery to tissues, since E2b‐deleted vectors display a profound reduction in viral gene expression. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

4.
5.
The Caenorhabditis elegans SLO-1 channel belongs to the family of calcium-activated large conductance BK potassium channels. SLO-1 has been shown to be involved in neurotransmitter release and ethanol response. Here, we report that SLO-1 also has a critical role in muscles. Inactivation of the slo-1 gene in muscles leads to phenotypes similar to those caused by mutations of the dystrophin homologue dys-1. Notably, slo-1 mutations result in a progressive muscle degeneration when put into a sensitized genetic background. slo-1 localization was observed by gfp reporter gene in both the M-line and the dense bodies (Z line) of the C.elegans body-wall muscles. Using the inside-out configuration of the patch clamp technique on body-wall muscle cells of acutely dissected wild-type worms, we characterized a Ca2+-activated K+ channel that was identified unambiguously as SLO-1. Since neither the abundance nor the conductance of SLO-1 was changed significantly in dys-1 mutants compared to wild-type animals, it is likely that the inactivation of dys-1 causes a misregulation of SLO-1. All in all, these results indicate that SLO-1 function in C.elegans muscles is related to the dystrophin homologue DYS-1.  相似文献   

6.
We have developed and characterized cultures of healthy and dystrophic canine myoblasts for the evaluation of various gene transfer protocols. The number of desmin-positive myoblasts was elevated (>>80%) in cultures of myoblasts obtained from different muscle territories, the diaphragm muscle giving rise to the purest cultures. Myoblasts from dogs turned out to be a very convenient source of well transfectable and transducible cells. Transfection with plasmid DNA allowed efficient transgene expression (50% of β-galactosidase positive cells and about 375 ng luciferase/mg protein after transfection with a calcium phosphate-precipitated plasmid). Infection with high concentrations of adenoviral and retroviral vectors allowed transgene (β-galactosidase or mini-dystrophin) detection in about 75 to 90% of the canine cells. Therefore, primary dog myoblast cultures represent a useful in vitro model for viral and non-viral gene delivery, as well as for functional evaluation and cell grafting with applications in genetic diseases, vaccination or production of circulating therapeutic proteins. Reiner Bischoff is now at This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
肖楠  苏玉虹 《生命科学》2007,19(4):438-445
杜氏肌营养不良症(Duchenne muscular dystrophy,DMD)属于X连锁隐性遗传病.DMD基因是人类最大基因,突变机制复杂.随着分子生物学的研究进展,对DMD的基因和其编码的抗肌萎缩蛋白(dystrophin)及抗肌萎缩蛋白相关蛋白(utrophin)的认识不断深入.本文就DMD的病理学特点,Dys基因结构、表达、功能,DMD突变及其相关检测技术,DMD实验动物模型及相关治疗的研究进展进行综述.  相似文献   

8.
9.
10.
11.
Facioscapulohumeral muscular dystrophy (FSHD) is caused by an unusual deletion with neomorphic activity. This deletion derepresses genes in cis; however which candidate gene causes the FSHD phenotype, and through what mechanism, is unknown. We describe a novel genetic tool, inducible cassette exchange, enabling rapid generation of isogenetically modified cells with conditional and variable transgene expression. We compare the effects of expressing variable levels of each FSHD candidate gene on myoblasts. This screen identified only one gene with overt toxicity: DUX4 (double homeobox, chromosome 4), a protein with two homeodomains, each similar in sequence to Pax3 and Pax7. DUX4 expression recapitulates key features of the FSHD molecular phenotype, including repression of MyoD and its target genes, diminished myogenic differentiation, repression of glutathione redox pathway components, and sensitivity to oxidative stress. We further demonstrate competition between DUX4 and Pax3/Pax7: when either Pax3 or Pax7 is expressed at high levels, DUX4 is no longer toxic. We propose a hypothesis for FSHD in which DUX4 expression interferes with Pax7 in satellite cells, and inappropriately regulates Pax targets, including myogenic regulatory factors, during regeneration.  相似文献   

12.
Dystrophin is the 427-kDa protein product of the Duchenne muscular dystrophy gene (DMD). The function of this protein remains to be elucidated. We have recently reported that dystrophin is phosphorylated,in vivo, in rat skeletal muscle primary cell culture (RE Milner, JL Busaan, CFB Holmes, JH Wang, M Michalak (1993) J Biol Chem 268: 21901–21905). This observation suggests that protein phosphorylation may have some role in modulating the function of dystrophin or its interaction with membrane associate dystroglycan. We report here that the carboxyl-terminal of dystrophin is phosphorylated by the MAP kinase p44mpk (mitogen-activated protein kinase), from the sea star oocytes and by soluble extracts of rabbit skeletal muscle. Importantly we showed that native dystrophin in isolated sarcolemmal vesicles is phosphorylated by sea star p44mpk. Partial purification and immunological analysis show that a mammalian kinase related to p44mpk is present in the skeletal muscle extracts and that it contributes to phosphorylation of the carboxyl-terminal of dystrophin. This kinase phosphorylates dystrophin on a threonine residue(s). We conclude that phosphorylation of dystrophin may play an important role in the function of this cytoskeletal protein.Abbreviations MAP kinase mitogen-activated protein kinase - DMD Duchenne muscular dystrophy - GST Glutathione S-transferase - PAGE polyacrylamide gel electrophoresis - EDTA ethylenediaminetetraacetic acid - EGTA ethylene glycol bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid - MOPS 4-morpholinepropanesulfonic acid  相似文献   

13.
Muscular dystrophies (MDs) are a heterogeneous group of inherited disorders characterized by progressive muscle wasting and weakness likely associated with exhaustion of muscle regeneration potential. At present, no cures or efficacious treatments are available for these diseases, but cell transplantation could be a potential therapeutic strategy. Transplantation of myoblasts using satellite cells or other myogenic cell populations has been attempted to promote muscle regeneration, based on the hypothesis that the donor cells repopulate the muscle and contribute to its regeneration. Embryonic stem cells (ESCs) and more recently induced pluripotent stem cells (iPSCs) could generate an unlimited source of differentiated cell types, including myogenic cells. Here we review the literature regarding the generation of myogenic cells considering the main techniques employed to date to elicit efficient differentiation of human and murine ESCs or iPSCs into skeletal muscle. We also critically analyse the possibility of using these cellular populations as an alternative source of myogenic cells for cell therapy of MDs.  相似文献   

14.
BACKGROUND: The helper-dependent adenovirus (HDAd) vector is less immunogenic and has a larger cloning capacity of up to 37 kb enough to carry the full-length dystrophin cDNA. However, high and long-term expression of dystrophin transduced to mature muscle still remains difficult. One of the main reasons for this is that the expression of the coxsackievirus and adenovirus receptor (CAR) is very low in mature muscle. METHODS: We have constructed two different HDAd vectors. One contains the LacZ and the murine full-length dystrophin expression cassette (HDAdLacZ-dys), and the other is a new, improved vector containing the CAR and the dystrophin expression cassette (HDAdCAR-dys). RESULTS: We initially demonstrated high dystrophin expression and prevention of the dystrophic pathology in mdx muscle injected during the neonatal phase with HDAdLacZ-dys. Furthermore, we demonstrated that repeated injections of HDAdCAR-dys into mature muscle led to approximately nine times greater dystrophin-positive fibers in number than a single injection, thereby recovering the expression of dystrophin-associated proteins. This data has also shown that HDAdCAR-dys enabled administration of adenovirus (Ad) vector to the host with pre-existing immunity to the same serotype of Ad. CONCLUSIONS: Repetitive injections of the HDAd vector containing the CAR and the dystrophin expression cassette could improve the efficiency of subsequent dystrophin gene transfer to mature mdx muscle. This result suggests that our new HDAd vector will provide a novel gene therapy strategy for Duchenne muscular dystrophy, raising the prospects for gene therapy of other hereditary myopathies.  相似文献   

15.
Nonsense mutations in the dystrophin gene are the cause of Duchenne muscular dystrophy (DMD) in 10–15% of patients. In such an event, one approach to gene therapy for DMD is the use of suppressor tRNAs to overcome the premature termination of translation of the mutant mRNA. We have carried out cotransfection of the HeLa cell culture with constructs containing a suptRNA gene (pcDNA3suptRNA) and a marker LacZ gene (pNTLacZhis) using their polymer VSST-525 complexes. It was found that the number of cells producing -galactosidase depends inversely on the dose of the suptRNA gene. A single in vivo injection of the construct providing for expression of the suptRNAochre gene into mdx mouse muscle resulted in the production of dystrophin in 2.5% of fibers. This suggests that suppressor tRNAs are applicable in gene therapy for hereditary diseases caused by nonsense mutations.  相似文献   

16.
《Cell Stem Cell》2022,29(4):610-619.e5
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

17.
It has been previously shown that transiently denervated, neonatal dystrophic muscle fails to undergo the degeneration–regeneration cycle characteristic of murine dystrophy (Moschella and Ontell, 1987). Thus, the myosatellite cells (myogenic stem cells) in these muscles have been spared the mitotic challenge to which dystrophic myosatellite cells are normally subjected early in the time course of the disease. By in vitro evaluation of the proliferative capacity of myosatellite cells derived from extensor digitorum longus (EDL) muscles of 100-day-old genetically normal (+/+) and genetically dystrophic [dy/dy (129ReJdy/dy)] mice and from muscles of age-matched mice that had been neonatally denervated (by sciaticotomy) and allowed to reinnervate, it has been possible to directly determine whether the cessation of spontaneous regeneration in older dy/dy muscles in vivo, is due to an innate defect in the proliferative capacity of the myosatellite cells or exhaustion of the myosatellite cells' mitotic activity during the regenerative phase of the disease. This study demonstrates that transient neonatal denervation of dystrophic muscle (Den.dy/dy) increases the number of muscle colony-forming cells (MCFs) permilligram of wet weight muscle tissue, increases the plating efficiency, and significantly increases the in vitro mitotic activity of dystrophic myosatellite cells toward normal values. The increased mitotic capability of myosatellite cells derived from Den.dy/dy muscle as compared to unoperated dy/dy muscle suggests that there is no innate defect in the proliferative capacity of the myosatellite cells of dy/dy muscles and that the cessation of spontaneous regeneration in the dy/dy muscles is related to the exhaustion of their myosatellite cells' mitotic capability. © 1992 John Wiley & Sons, Inc.  相似文献   

18.
19.
本文使用了缺失热点区的两个DMD cDNA片段1b-2a及8为探针检测Duc-henne型及Becker型肌营养不良(DMD/BMD)患者的基因缺失。在34例不相关患者中分别检测到5例及8例基因片段缺失,缺失检测率分别为14.7%及23.5%,总检出率为38.2%。结果表明,中国肌营养不良患者的基因缺失也不是随机分布的,主要集中于基因中心附近,其次在基因5′侧。  相似文献   

20.
目的建立Duchenne型肌营养不良(DMD)模型dko小鼠的鉴定方法,评估干细胞移植后dystrophin的再生水平。方法采用SSP-PCR方法鉴定杂合子鼠交配产生的子代鼠的基因型。生化分析仪测定dko小鼠血浆肌酸激酶含量,HE染色观察肌肉组织学变化。扩增人脐带间充质干细胞并注射到dko小鼠后肢肌肉,2个月后免疫荧光染色法检测dystrophin的表达。结果杂合子鼠交配可以产生三个基因型的子代鼠,21.2%的子代鼠可以鉴定为dko小鼠的基因型(285 bp)。dko小鼠显示了肌营养不良的症状,血浆肌酸激酶含量高达(16,988.52±617.48)IU/L,典型的病理变化包括肌纤维大小不一,多见核中移细胞,结缔组织增生或炎性细胞浸润。将人脐带间充质干细胞注射到dko小鼠后肢肌肉,2个月后可检测到人dystrophin的表达。结论采用SSP-PCR可用于鉴定dko小鼠基因型,dko小鼠是研究干细胞治疗DMD的理想动物模型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号