首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
L K Durrin  R K Mann  P S Kayne  M Grunstein 《Cell》1991,65(6):1023-1031
  相似文献   

2.
3.
Initiation of chromosome replication in Escherichia coli is governed by the interaction of the initiator protein DnaA with the replication origin oriC. Here we present evidence that homo-oligomerization of DnaA via its N-terminus (amino acid residues 1-86) is also essential for initiation. Results from solid-phase protein-binding assays indicate that residues 1-86 (or 1-77) of DnaA are necessary and sufficient for self interaction. Using a 'one-hybrid-system' we found that the DnaA N-terminus can functionally replace the dimerization domain of coliphage lambda cl repressor: a lambdacl-DnaA chimeric protein inhibits lambda plasmid replication as efficiently as lambdacI repressor. DnaA derivatives with deletions in the N-terminus are incapable of supporting chromosome replication from oriC, and, conversely, overexpression of the DnaA N-terminus inhibits initiation in vivo. Together, these results indicate that (i) oligomerization of DnaA N-termini is essential for protein function during initiation, and (ii) oligomerization does not require intramolecular cross-talk with the nucleotide-binding domain III or the DNA-binding domain IV. We propose that E. coli DnaA is composed of largely independent domains - or modules - each contributing a partial, though essential, function to the proper functioning of the 'holoprotein'.  相似文献   

4.
Glutaminyl cyclases (QCs) catalyze the formation of pyroglutamic acid at the N-terminus of several peptides and proteins. On the basis of the amino acid sequence of Carica papaya QC, we identified cDNAs of the putative counterparts from Solanum tuberosum and Arabidopsis thaliana. Upon expression of the corresponding cDNAs from both plants via the secretory pathway of Pichia pastoris, two active QC proteins were isolated. The specificity of the purified proteins was assessed using various substrates with different amino acid composition and length. Highest specificities were observed with substrates possessing large hydrophobic residues adjacent to the N-terminal glutamine and for fluorogenic dipeptide surrogates. However, compared to Carica papaya QC, the specificity constants were approximately one order of magnitude lower for most of the QC substrates analyzed. The QCs also catalyzed the conversion of N-terminal glutamic acid to pyroglutamic acid, but with approximately 10(5)- to 10(6)-fold lower specificity. The ubiquitous distribution of plant QCs prompted a search for potential substrates in plants. Based on database entries, numerous proteins, e.g., pathogenesis-related proteins, were found that carry a pyroglutamate residue at the N-terminus, suggesting QC involvement. The putative relevance of QCs and pyroglutamic acid for plant defense reactions is discussed.  相似文献   

5.
We have developed a specific and efficient method for complete removal of polyhistidine purification tags (HisTags) from the N-termini of target proteins. The method is based on the use of the aminopeptidase dipeptidyl peptidase I (DPPI), either alone or in combination with glutamine cyclotransferase (GCT) and pyroglutamyl aminopeptidase (PGAP). In both cases, the HisTag is cleaved off by DPPI, which catalyzes a stepwise excision of a wide range of dipeptides from the N-terminus of a peptide chain. Some sequences, however, are resistant to DPPI cleavage and a number of mature proteins have nonsubstrate N-termini which protects them against digestion. For such proteins, HisTags composed of an even number of residues can be cleaved off by treatment with DPPI alone. When the target protein is unprotected against DPPI, a blocking group is generated enzymatically from a glutamine residue inserted between the HisTag and the target protein. A protein with a HisTag-Gln extension is incubated with both DPPI and GCT. As above, the polyhistidine sequence is cleaved off by DPPI, but when the glutamine residue appears in the N-terminus, it is immediately converted into a pyroglutamyl residue by an excess of GCT and further DPPI digestion is prevented. The desired sequence is finally obtained by excision of the pyroglutamyl residue with PGAP. All the enzymes employed can bind to immobilized metal affinity chromatography (IMAC) matrices, and in this paper we demonstrate a simple and highly effective process combining IMAC purification of His-tagged proteins, our aminopeptidase-based method for specific excision of HisTags and use of subtractive IMAC for removing processing enzymes. Typical recoveries were 75-90% for the enzymatic processing and subtractive IMAC. The integrated process holds promises for use in large-scale production of pharmaceutical proteins because of a simple overall design, use of robust and inexpensive matrices, and use of enzymes of either recombinant or plant origin.  相似文献   

6.
Cyclin B, a regulatory subunit of maturation/M-phase promoting factor (MPF), has several subtypes in many vertebrate species. However, it is not known whether the different B-type cyclins have any different functions in vertebrate cells, although their subcellular localizations seem to differ largely from each other. To examine the roles of two major B-type cyclins, B1 and B2, in spindle formation in M phase, we overexpressed their N-termini in Xenopus oocytes; the N-termini of cyclins B1 and B2 contained a cytoplasmic retention signal (CRS), and hence their overexpressions were expected to competitively inhibit the subcellular localizations of the endogenous cyclins B1 and B2, respectively. Upon entry into meiosis I, oocytes overexpressing the cyclin B1 N-terminus formed an apparently normal bipolar spindle, but those oocytes overexpressing the cyclin B1 N-terminus formed a monopolar (or monoastral) spindle. This defect in bipolar spindle formation was observed only when the cyclin B2 N-terminus contained its own CRS sequence, and was able to be rescued by overexpression of full-length cyclin B2. These results suggest, for the first time, that the correct subcellular localization of cyclin B2, but not of cyclin B1, is essential for (the initiation of) bipolar spindle formation in Xenopus oocytes.  相似文献   

7.
Most mitochondrial proteins are encoded in the nucleus as precursor proteins and carry N-terminal presequences for import into the organelle. The vast majority of presequences are proteolytically removed by the mitochondrial processing peptidase (MPP) localized in the matrix. A subset of precursors with a characteristic amino acid motif is additionally processed by the mitochondrial intermediate peptidase (MIP) octapeptidyl aminopeptidase 1 (Oct1), which removes an octapeptide from the N-terminus of the precursor intermediate. However, the function of this second cleavage step is elusive. In this paper, we report the identification of a novel Oct1 substrate protein with an unusual cleavage motif. Inspection of the Oct1 substrates revealed that the N-termini of the intermediates typically carry a destabilizing amino acid residue according to the N-end rule of protein degradation, whereas mature proteins carry stabilizing N-terminal residues. We compared the stability of intermediate and mature forms of Oct1 substrate proteins in organello and in vivo and found that Oct1 cleavage increases the half-life of its substrate proteins, most likely by removing destabilizing amino acids at the intermediate's N-terminus. Thus Oct1 converts unstable precursor intermediates generated by MPP into stable mature proteins.  相似文献   

8.
Thousands of proteins make up a chloroplast, but fewer than 100 are encoded by the chloroplast genome. Despite this low number, expression of chloroplast-encoded genes is essential for plant survival. Every chloroplast has its own gene expression system with a major regulatory point at the initiation of protein synthesis (translation). In chloroplasts, most protein-encoding genes contain elements resembling the ribosome binding sites (RBS) found in prokaryotes. In vitro, these putative chloroplast ribosome binding sequences vary in their ability to support translation. Here we report results from an investigation into effects of the predicted RBS for the tobacco chloroplast atpI gene on translation in vivo. Two reporter constructs, differing only in their 5'-untranslated regions (5'UTRs) were stably incorporated into tobacco chloroplast genomes and their expression analyzed. One 5'UTR was derived from the wild-type (WT) atpI gene. The second, Holo-substitution (Holo-sub), had nonchloroplast sequence replacing all wild-type nucleotides, except for the putative RBS. The abundance of reporter RNA was the same for both 5'UTRs. However, translation controlled by Holo-sub was less than 4% that controlled by WT. These in vivo experiments support the idea that translation initiation in land plant chloroplasts depends on 5'UTR elements outside the putative RBS.  相似文献   

9.
10.
The erythrocytic stage development of malaria parasites occurs within the parasitophorous vacuole inside the infected-erythrocytes, and requires transport of several parasite-encoded proteins across the parasitophorous vacuole to several locations, including the cytosol and membrane of the infected cell. These proteins are called exported proteins; and a large number of such proteins have been predicted for Plasmodium falciparum based on the presence of an N-terminal motif known as the Plasmodium export element (PEXEL) or vacuolar transport signal (VTS), which has been shown to mediate export. The majority of exported proteins contain one or more transmembrane domains at the C-terminus and one of three types of N-terminus domain architectures. (1) The majority, including the knob-associated histidine rich protein (KAHRP), contain a signal/hydrophobic sequence preceding the PEXEL/VTS motif. (2) Other exported proteins, including the P. berghei variant antigen family bir and the P. falciparum skeleton binding protein-1, do not appear to contain a PEXEL/VTS motif. (3) The P. falciparum erythrocyte membrane protein-1 (PfEMP1) family lacks a signal/hydrophobic sequence before the motif. These different domain architectures suggest the presence of multiple export pathways in malaria parasites. To determine if export pathways are conserved in plasmodia and to develop an experimental system for studying these processes, we investigated export of GFP fused with N- and C-terminus putative export domains in the rodent malaria parasite P. berghei. Export was dependent on specific N- and C-terminal domains. Constructs with a KAHRP-like or bir N-terminus, but not the PfEMP1 N-terminus, exported GFP into the erythrocyte. The C-terminus of a P. falciparum variant antigen rifin prevented GFP export by the KAHRP-like N-terminus. In contrast, GFP chimeras containing KAHRP-like N-termini and the PfEMP1 C-terminus were exported to the surface of erythrocytes. Taken together, these results suggest that proteins with KAHRP-like architecture follow a common export pathway, but that PfEMP1s utilize an alternative pathway. Functional validation of common putative export domains of malaria parasites in P. berghei provides an alternative and simpler system to investigate export mechanisms.  相似文献   

11.
We have determined the N-termini of 26 proteins of the large ribosomal subunit from yeast mitochondria by direct amino acid micro-sequencing. The N-terminal sequences of proteins YmL33 and YmL38 showed a significant similarity to eubacterial ribosomal (r-) proteins L30 and L14, respectively. In addition, several proteins could be assigned to their corresponding yeast nuclear genes. Based on a comparison of the protein sequences deduced from the corresponding DNA regions with the N-termini of the mature proteins, the putative leader peptides responsible for mitochondrial matrix-targeting were compiled. In most leader sequences a relative abundance of aromatic amino acids, preferentially phenylalanine, was found.  相似文献   

12.
13.
Surface proteins of gram-positive bacteria often play a role in adherence of the bacteria to host tissue and are frequently required for virulence. A specific subgroup of extracellular proteins contains the cell wall-sorting motif LPxTG, which is the target for cleavage and covalent coupling to the peptidoglycan by enzymes called sortases. A comprehensive set of putative sortase substrates was identified by in silico analysis of 199 completely sequenced prokaryote genomes. A combination of detection methods was used, including secondary structure prediction, pattern recognition, sequence homology, and genome context information. With the hframe algorithm, putative substrates were identified that could not be detected by other methods due to errors in open reading frame calling, frameshifts, or sequencing errors. In total, 732 putative sortase substrates encoded in 49 prokaryote genomes were identified. We found striking species-specific variation for the LPxTG motif. A hidden Markov model (HMM) based on putative sortase substrates was created, which was subsequently used for the automatic detection of sortase substrates in recently completed genomes. A database was constructed, LPxTG-DB (http://bamics3.cmbi.kun.nl/sortase_substrates), containing for each genome a list of putative sortase substrates, sequence information of these substrates, the organism-specific HMMs based on the consensus sequence of the sortase recognition motif, and a graphic representation of this consensus.  相似文献   

14.
Integral membrane proteins are generally targeted to translocation-competent membranes by virtue of signal sequences located close to the N-terminus of the polypeptide chain. Membrane anchoring is caused by the signal sequence or other hydrophobic segments located after it in the amino acid sequence. However, some integral membrane proteins do not follow these rules. The members of one class of nonconformist membrane proteins have no signal sequence, but instead possess a hydrophobic segment near the C-terminus that orients them with their N-termini in the cytoplasm. Members of this class are found in many organelles and are probably inserted into membranes by an unusual mechanism.  相似文献   

15.
There are currently 151 plants with draft genomes available but levels of functional annotation for putative protein products are low. Therefore, accurate computational predictions are essential to annotate genomes in the first instance, and to provide focus for the more costly and time consuming functional assays that follow. DNA-binding proteins are an important class of proteins that require annotation, but current computational methods are not applicable for genome wide predictions in plant species. Here, we explore the use of species and lineage specific models for the prediction of DNA-binding proteins in plants. We show that a species specific support vector machine model based on Arabidopsis sequence data is more accurate (accuracy 81%) than a generic model (74%), and based on this we develop a plant specific model for predicting DNA-binding proteins. We apply this model to the tomato proteome and demonstrate its ability to perform accurate high-throughput prediction of DNA-binding proteins. In doing so, we have annotated 36 currently uncharacterised proteins by assigning a putative DNA-binding function. Our model is publically available and we propose it be used in combination with existing tools to help increase annotation levels of DNA-binding proteins encoded in plant genomes.  相似文献   

16.
Secondary structure prediction from amino acid sequence is a key component of protein structure prediction, with current accuracy at approximately 75%. We analysed two state-of-the-art secondary structure prediction methods, PHD and JPRED, comparing predictions with secondary structure assigned by the algorithms DSSP and STRIDE. The specific focus of our study was alpha-helix N-termini, as empirical free energy scales are available for residue preferences at N-terminal positions. Although these prediction methods perform well in general at predicting the alpha-helical locations and length distributions in proteins, they perform less well at predicting the correct helical termini. For example, although most predicted alpha-helices overlap a real alpha-helix (with relatively few completely missed or extra predicted helices), only one-third of JPRED and PHD predictions correctly identify the N-terminus. Analysis of neighbouring N-terminal sequences to predicted helical N-termini shows that the correct N-terminus is often within one or two residues. More importantly, the true N-terminal motif is, on average, more favourable as judged by our experimentally measured free energies. This suggests a simple, but powerful, strategy to improve secondary structure prediction using empirically derived energies to adjust the predicted output to a more favourable N-terminal sequence.  相似文献   

17.
Karlin D  Belshaw R 《PloS one》2012,7(3):e31719
Paramyxovirinae are a large group of viruses that includes measles virus and parainfluenza viruses. The viral Phosphoprotein (P) plays a central role in viral replication. It is composed of a highly variable, disordered N-terminus and a conserved C-terminus. A second viral protein alternatively expressed, the V protein, also contains the N-terminus of P, fused to a zinc finger. We suspected that, despite their high variability, the N-termini of P/V might all be homologous; however, using standard approaches, we could previously identify sequence conservation only in some Paramyxovirinae. We now compared the N-termini using sensitive sequence similarity search programs, able to detect residual similarities unnoticeable by conventional approaches. We discovered that all Paramyxovirinae share a short sequence motif in their first 40 amino acids, which we called soyuz1. Despite its short length (11-16aa), several arguments allow us to conclude that soyuz1 probably evolved by homologous descent, unlike linear motifs. Conservation across such evolutionary distances suggests that soyuz1 plays a crucial role and experimental data suggest that it binds the viral nucleoprotein to prevent its illegitimate self-assembly. In some Paramyxovirinae, the N-terminus of P/V contains a second motif, soyuz2, which might play a role in blocking interferon signaling. Finally, we discovered that the P of related Mononegavirales contain similarly overlooked motifs in their N-termini, and that their C-termini share a previously unnoticed structural similarity suggesting a common origin. Our results suggest several testable hypotheses regarding the replication of Mononegavirales and suggest that disordered regions with little overall sequence similarity, common in viral and eukaryotic proteins, might contain currently overlooked motifs (intermediate in length between linear motifs and disordered domains) that could be detected simply by comparing orthologous proteins.  相似文献   

18.
19.
Using a previously developed automated method for enzyme annotation, we report the re-annotation of the ENZYME database and the analysis of local error rates per class. In control experiments, we demonstrate that the method is able to correctly re-annotate 91% of all Enzyme Classification (EC) classes with high coverage (755 out of 827). Only 44 enzyme classes are found to contain false positives, while the remaining 28 enzyme classes are not represented. We also show cases where the re-annotation procedure results in partial overlaps for those few enzyme classes where a certain inconsistency might appear between homologous proteins, mostly due to function specificity. Our results allow the interactive exploration of the EC hierarchy for known enzyme families as well as putative enzyme sequences that may need to be classified within the EC hierarchy. These aspects of our framework have been incorporated into a web-server, called CORRIE, which stands for Correspondence Indicator Estimation and allows the interactive prediction of a functional class for putative enzymes from sequence alone, supported by probabilistic measures in the context of the pre-calculated Correspondence Indicators of known enzymes with the functional classes of the EC hierarchy. The CORRIE server is available at: http://www.genomes.org/services/corrie/.  相似文献   

20.
《Gene》1996,168(2):183-187
The genomic nucleotide sequence for the region of 66 to 77 map units (m.u.) of mouse adenovirus type 1 (MAV-1) was determined and predicted to encode proteins homologous to the human adenovirus (Ad) 100-kDa, 33-kDa and DNA-binding proteins (DBP). The putative MAV-1 100-kDa protein has 65-70% amino-acid similarity to 100-kDa proteins from five different human Ad serotypes. The mRNA for the putative 33-kDa protein is internally spliced within the coding sequence, as are its human Ad counterparts [Oosterom-Dragon and Anderson, J. Virol. 45 (1983) 251–;263]. The N-terminal region of the putative MAV-1 33-kDa protein has 41–;44% similarity to two human Ad 33-kDa N-termini, and the C-terminal regions are more conserved, with 60–;65% similarity. The MAV-1 DBP is predicted to be encoded in this region and was compared to six different human Ad DBP N- and C-termini. The N-termini of the MAV-1 and Ad DBP were 33–48% similar and the C-termini were 56–60% similar. The MAV-1 DBP contains conserved regions (CR) 1, 2 and 3, and it retains important residues for a putative zinc finger (Zf) motif identified in Ad DBP [Eagle and Klessig, Virology 187 (1992) 777–;787]. Additional sequence features of these three proteins have also been identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号