首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of intracerebroventricular application of melanin-concentrating hormone (MCH) on licking for sucrose, quinine hydrochloride (QHCl), and water solutions were evaluated in two experiments. In experiment 1, rats received 90-min access to sucrose and water solutions after MCH or vehicle microinjection to the third ventricle (3V). MCH increased intake largely through increases in the rate of licking early in the meal and in the mean duration of lick bursts, suggesting an effect on gustatory evaluation. Therefore, in experiment 2, brief access tests were used with a series of sucrose and QHCl concentrations to behaviorally isolate the effects of intracerebroventricular MCH on gustatory evaluation. MCH uniformly increased licking for all sucrose solutions, water, and weak concentrations of QHCl; however, it had no effect on licking for the strongest concentrations of QHCl, which were generally avoided under control conditions. Thus MCH did not produce nonspecific increases in oromotor activity, nor did it change the perceived intensity of the tastants. We conclude that MCH enhanced the gain of responses to normally accepted stimuli at a phase of processing after initial gustatory detection and after the decision to accept or reject the taste stimulus. A comparison of 3V NPY and MCH effects on licking microstructure indicated that these two peptides increased intake via dichotomous behavioral processes; although NPY suppressed measures associated with inhibitory feedback from the gut, MCH appeared instead to enhance measures associated with hedonic taste evaluation.  相似文献   

2.
Injections of the melanocortin 3/4 receptor (MCR) agonist melanotan II (MTII) to a variety of brain structures produces anorexia, suggesting distributed brain MCR control of food intake. We performed a detailed analysis of feeding behavior (licking microstructure analysis) after a range of MTII doses (0.005 nM to 1 nM) was targeted to the forebrain (third ventricle, 3V) or hindbrain (fourth ventricle, 4V) regions. MTII (0.1 nM and 1 nM) delivered to the 3V or 4V significantly reduced 0.8 M sucrose intake. The anorexia was mediated by reductions in the number of licking bursts in the meal, intrameal ingestion rate, and meal duration; these measures have been associated with postingestive feedback inhibition of feeding. Anorexia after 3V but not 4V MTII injection was also associated with a reduced rate of licking in the first minute (initial lick rate) and reduced mean duration of licking bursts; these measures have been associated with taste evaluation. MTII effects on taste evaluation were further explored: In experiment 2, 3V MTII (1 nM) significantly reduced intake of noncaloric 4 mM saccharin and 0.1 M and 1 M sucrose solutions, but not water. The anorexia was again associated with reduced number of licking bursts, ingestion rate, meal duration, initial lick rate, and mean burst duration. In experiments 3 and 4, brief access (20 s) licking responses for sweet sucrose (0.015 M to 0.25 M) and bitter quinine hydrochloride (0.01 mM to 1 mM) solutions were evaluated. Licking responses for sucrose were suppressed, whereas those for quinine solutions were increased after 3V MTII, but not after 4V MTII injections (0.1 nM and 1 nM). The results suggest that multiple brain MCR sites influence sensitivity to visceral feedback, whereas forebrain MCR stimulation is necessary to influence taste responsiveness, possibly through attenuation of the perceived intensity of taste stimuli.  相似文献   

3.
Behavioral evidence for a role of alpha-gustducin in glutamate taste   总被引:3,自引:0,他引:3  
The taste perception of monosodium glutamate (MSG) is termed 'umami'. Two putative taste receptors for glutamate have been identified, a truncated form of mGluR4 (taste-mGluR4) and the presumed heterodimer T1R1 + T1R3. Both receptors respond to glutamate when expressed in heterologous cells, but the G protein involved is not known. Galpha-Gustducin mediates the transduction of several bitter and sweet compounds; however, its role in umami has not been determined. We used standard two-bottle preference tests on alpha-gustducin knockout (KO) and wildtype (WT) mice to compare preferences for ascending concentrations of MSG and MSG + 5'-inosine monophosphate (IMP). A Latin Square was used to assign the order of tastants presented to each mouse. Statistical comparisons between KO and WT mice revealed that whereas WT mice preferred solutions of MSG and MSG + IMP over water, KO mice showed little preference for these stimuli. Denatonium and sucrose served as control stimuli and, as shown previously, WT mice prefered sucrose and avoided denatonium significantly more than did KO mice. Na?ve mice were also tested, and while prior exposure to taste stimuli influenced the magnitude of the preferences, experience did not change the overall pattern of intake. These data suggest that alpha-gustducin plays a role in glutamate taste.  相似文献   

4.
Horio T 《Chemical senses》2000,25(2):149-153
Relationships between taste stimuli and heart rate were evaluated in 29 healthy university students. The test solutions were sucrose, NaCl, citric acid, quinine-HCl and monosodium glutamate (MSG). Heart rate increased by 7.1-13.6% for all the taste stimuli after use as compared with pre-stimuli values. The maximum increases in heart rate came approximately 25 s after the taste stimuli. After the increases, heart rate returned to pre-stimuli levels after between 80 and 100 s. Heart rate reached its maximum with citric acid. Recovery from the heart-rate increase was more delayed for quinine-HCl and MSG than for the other stimuli. Except for sucrose, increases in heart rate and the hedonic scale values of the taste solutions showed significant negative correlation. These findings show that the taste stimuli solutions increased the heart rate and that the increase differed with the concentration and taste solution used.  相似文献   

5.
A group of Japanese and a group of Australians rated their likingfor solutions of seven tastants: sucrose, NaCl, citric acid,caffeine and three umami tastes (MSG, IMP, GMP). The patternsof response were similar in both groups for all of the tastants.Differences between the groups were evident at the higher concentrationsof citric acid, GMP and MSG, and also at the lowest concentrationof MSG. There were no differences in the hedonic ratings forsucrose, NaCl or caffeine. Analysis of the response patternsof individuals across the range of concentrations revealed thatthe mean response patterns were generally a good representationof each group. These data suggest that the two groups were moresimilar than different in their responses to tastants in solution.  相似文献   

6.
Generalization of a conditioned taste aversion (CTA) is based on similarities in taste qualities shared by the aversive substance and another taste substance. CTA experiments with rats have found that an aversion to a variety of sweet stimuli will cross-generalize with monosodium glutamate (MSG) when amiloride, a sodium channel blocker, is added to all solutions to reduce the taste of sodium. These findings suggest that the glutamate anion elicits a sweet taste sensation in rats. CTA experiments, however, generally do not indicate whether two substances have different taste qualities. In this study, discrimination methods in which rats focused on perceptual differences were used to determine if they could distinguish between the tastes of MSG and four sweet substances. As expected, rats readily discriminated between two natural sugars (sucrose, glucose) and two artificial sweeteners (saccharin, SC45647). Rats also easily discriminated between MSG and glucose, saccharin and, to a lesser extent, SC45647 when the taste of the sodium ion of MSG was reduced by the addition of amiloride to all solutions, or the addition of amiloride to all solutions and NaCl to each sweet stimulus to match the concentration of Na+ in the MSG solutions. In contrast, reducing the cue function of the Na+ ion significantly decreased their ability to discriminate between sucrose and MSG. These results suggest that the sweet qualities of glutamate taste is not as dominate a component of glutamate taste as CTA experiments suggest and these qualities are most closely related to the taste qualities of sucrose. The findings of this study, in conjunction with other research, suggest that sweet and umami afferent signaling may converge through a taste receptor with a high affinity for glutamate and sucrose or a downstream transduction mechanism. These data also suggest that rats do not necessarily perceive the tastes of these sweet stimuli as similar and that these sweet stimuli are detected by multiple sweet receptors.  相似文献   

7.
The taste responsiveness of six squirrel monkeys, five pigtail macaques, four olive baboons and four spider monkeys to monsodium glutamate (MSG) and to sodium chloride was assessed in two-bottle preference tests of brief duration (2 min). When given the choice between tap water and defined concentrations of the two tastants dissolved in tap water, the animals were found to significantly discriminate concentrations of MSG as low as 2 mM (spider monkeys and olive baboons), 50 mM (pigtail macaques) and 300 mM (squirrel monkeys) from the solvent. With sodium chloride, taste preference thresholds were found to be 1 mM (spider monkeys), 20 mM (pigtail macaques), 50 mM (olive baboons), and 200 mM (squirrel monkeys), respectively. Across-species comparisons of the degree of preference for MSG and sodium chloride displayed by the four primate species showed the same order of spider monkeys>olive baboons>pigtail macaques>squirrel monkeys. When presented with equimolar concentrations of different tastants, all four species preferred sucrose as well as a mixture of sucrose and sodium chloride over MSG, and--at least at one concentration--they preferred MSG over sodium chloride. The results support the assertion that the taste responsiveness of the four primate species to MSG and sodium chloride might reflect an evolutionary adaptation to their respective dietary habits.  相似文献   

8.
Even though monosodium glutamate (MSG) is a prototypical umami substance, previous studies reported that a conditioned taste aversion (CTA) to MSG, mixed with amiloride to block the taste of sodium, generalizes to sucrose. These findings suggest that the taste of glutamate mimics the taste of sucrose and raise the question of whether glutamate has a broadly tuned sweet taste component. To test this hypothesis, CTA experiments were conducted to test for generalization between MSG and several sweet stimuli: sucrose, glucose, maltose, saccharin and SC-45647. Strong bidirectional generalization was seen between MSG mixed with amiloride and sucrose, glucose, saccharin and SC-45647. Weak generalization was seen between MSG and maltose, and sucrose and maltose. None of the CTAs generalized to NMDA. These findings support the hypothesis that the taste of MSG has broadly tuned, sweet-like characteristics, possibly due to the convergence of afferent signals for MSG, natural sugars and artificial sweeteners.  相似文献   

9.
Rats can be classified as either sucralose avoiders (SA) or sucralose preferrers (SP) based on their behavioral responses in 2-bottle preference, 1-bottle intake, and brief-access licking tests. The present study demonstrates that this robust phenotypic variation in the preference for sucralose predicts acceptance of saccharin, an artificial sweetener with a purported concentration-dependent "bitter" side taste and a 0.25 M sucrose solution adulterated with increasing concentrations of quinine hydrochloride (QHCl). Specifically, SA displayed decreased preference for and intakes of saccharin (≥41.5 mM) and sucrose-QHCl (>0.5 mM QHCl) solutions, relative to SP. In a second experiment involving brief-access (30-s) tests, SP and SA did not differ in their unconditioned licking responses across a range of sodium chloride or QHCl solutions (0.03-1 mM). However, the acceptability threshold for sucrose was lower in SA, relative to SP (0.06 and 0.13 M, respectively). Our findings suggest that phenotypic differences in sucralose preference are indicative of a more general difference in the hedonic processing of stimuli containing "bittersweet" or "sweet" taste qualities.  相似文献   

10.
Upon stimulation with continuously alternating (pulsatile) taste concentrations, humans report higher average taste intensities than for continuous stimulation with the same average tastant concentration. We investigated the effect of the magnitude of concentration changes (concentration contrast) and the effect of taste quality changes (quality contrast) between alternating tastants on sweet taste enhancement. The perceived sweetness intensity increased with the magnitude of the sucrose concentration contrast: The pulsatile stimulus with the highest concentration difference (average sucrose concentration: 60 g/L) was rated as the sweetest in spite of the fact that the gross sucrose concentrations were identical over stimuli. Moreover, this stimulus was rated equally sweet as a continuous reference of 70 g/L sucrose. On alternation of sucrose with the qualitatively different citric acid, sweet taste enhancement remained at the level observed for alternation with water at citric acid concentration levels up to 3 times its detection threshold. Alternation of a sucrose solution with a citric acid solution at 9 times its threshold concentration, resulted in an attenuation of the pulsation-induced enhancement effect. Upon alternation of citric acid pulses at concentrations around the threshold with water intervals only, no taste enhancement was observed compared with continuous citric acid stimuli of the same net concentration. We propose that the magnitude of pulsation-induced taste enhancement is determined by the absolute rather than relative change of tastant concentration. This explains why 1) pulsation-induced sweet taste enhancement is determined by the magnitude of the sucrose pulse-interval contrast and 2) the alteration of citric acid with water does not enhance taste intensity at detection threshold level.  相似文献   

11.
Melanin-concentrating hormone (MCH) and neuropeptide Y (NPY) are orexigenic peptides found in hypothalamic neurons that project throughout the forebrain and hindbrain. The effects of fourth ventricle (4V) infusions of NPY (5 microg) and MCH (5 microg) on licking for water, 4 mM saccharin, and sucrose (0.1 and 1.0 M) solutions were compared to identify the contributions of each peptide to hindbrain-stimulated feeding. NPY increased mean meal size only for the sucrose solutions, suggesting that caloric feedback or taste quality is pertinent to the orexigenic effect; MCH infusions under identical testing conditions failed to produce increases for any tastant. A second experiment also observed no intake or licking effects after MCH doses up to 15 microg, supporting the conclusion that MCH-induced orexigenic responses require forebrain stimulation. A third experiment compared the 4V NPY results with those obtained after NPY infusions (5 microg) into the third ventricle (3V). In contrast to the effects observed after the 3V NPY injections and previously reported forebrain intracerebroventricular (ICV) NPY infusion studies, 4V NPY failed to increase meal frequency for any taste solution or ingestion rate in the early phases of the sucrose meals. Overall, 4V NPY responses were limited to intrameal behavioral processes, whereas forebrain ICV NPY stimulation elicited both consummatory and appetitive responses. The dissociation between MCH and NPY effects observed for 4V injections is consistent with reports that forebrain ICV injections of MCH and NPY produced nearly dichotomous effects on the pattern of licking microstructure, and, collectively, the results indicate that the two peptides have separate sites of feeding action in the brain.  相似文献   

12.
Horio  T; Kawamura  Y 《Chemical senses》1998,23(4):417-421
The effects of physical exercise on preference for various sapid solutions was studied in 58 healthy university students. After 30 min of exercise using a bicycle ergometer at 50% VO2max (maximal oxygen uptake) intensity, a rating scale test on taste hedonic tone and the triangle test for taste absolute threshold were done. The test solutions were sucrose, NaCl, citric acid, caffeine and monosodium glutamate (MSG). Preference scale values for sucrose and citric acid increased after exercise, whereas the values for NaCl, caffeine and MSG were not changed. The absolute thresholds for all the sapid solutions did not differ for pre- and post-exercise. These findings indicate that in humans preference for sucrose and citric acid increase after physical exercise.   相似文献   

13.
The influence of ageing on supra-threshold intensity perception of NaCl, KCl, sucrose, aspartame, acetic acid, citric acid, caffeine, quinine HCl, monosodium glutamate (MSG) and inosine 5'-monophosphate (IMP) dissolved in water and in 'regular' product was studied in 21 young (19-33 years) and 21 elderly (60-75 years) persons. While the relative perception (intensity discrimination) seems to be remarkably resistant to the effect of ageing, the absolute perception (intensity rating) decreased with age for all tastants in water, but only for the salty and sweet tastants in product. When assessed while wearing a nose clip, only the perception of salty tastants was diminished with age. The slopes of the psychophysical functions were flatter in the elderly than in the young for the sweet, bitter and umami tastants in water, and for the sour tastants in product only. The age effects found were almost exclusively generic and never compound-specific within a taste. This study indicates that the relevance of determining intensities of tastants dissolved in water for the 'real life' perception of taste in complex food is rather limited.  相似文献   

14.
Prior research has documented a modulating effect of taste on swallowing. We hypothesized that presentation of tastant stimuli would be a significant variable in swallowing-respiratory coordination, duration of oral bolus preparation, and submental muscle contraction. Twenty-three healthy females were presented with 1-cm(3) gelatin samples flavored with 4 tastants of increasing intensities. Visual analogue scale ratings of perceived intensity of each were used to identify relative equivalent concentrations across the 4 tastants. Data were then collected during ingestion of 5 trials of the 4 equivalent tastants using measurements of nasal airflow and submental surface electromyography (sEMG) to record biomechanical measures. Chi-square analysis failed to identify a statistically significant influence of taste on the phase location of swallowing apnea. Repeated measures analysis of variance demonstrated significant taste effects for oral preparation time, submental sEMG amplitude, and duration (P < 0.02). Sweet tastants were prepared for a shorter time when compared with bitter tastants. Swallow duration for sour, salty, and bitter tastants were longer than sweet and neutral tastants. Sour tastants resulted in the greatest amplitude of submental muscle contraction during swallowing. This study supports existing research that found that sour substances were swallowed with more effort when compared with other tastes.  相似文献   

15.
16.
Someamphipathic bitter tastants and non-sugar sweeteners are directactivators of G proteins and stimulate transduction pathways in cellsnot related to taste. We demonstrate that the amphipathic bittertastants quinine and cyclo(Leu-Trp) and the non-sugar sweetener saccharin translocate rapidly through multilamellar liposomes. Furthermore, when rat circumvallate (CV) taste buds were incubated withthe above tastants for 30 s, their intracellular concentrations increased by 3.5- to 7-fold relative to their extracellularconcentrations. The time course of this dramatic accumulation was alsomonitored in situ in rat single CV taste buds under a confocallaser-scanning microscope. Tastants were clearly localized to the tastecell cytosol. It is proposed that, due to their rapid permeation into taste cells, these amphipathic tastants may be available for activation of signal transduction components (e.g., G proteins) directly withinthe time course of taste sensation. Such activation may occur inaddition to the action of these tastants on putative G protein-coupledreceptors. This phenomenon may be related to the slow taste onset andlingering aftertaste typically produced by many bitter tastants andnon-sugar sweeteners.

  相似文献   

17.
We examined the necessity of alpha-gustducin, a G protein alpha-subunit expressed in taste cells, to taste-mediated licking responses of mice to sapid stimuli. To this end, we measured licking responses of alpha-gustducin knock-out (Gus-/-) mice and heterozygotic littermate controls (Gus+/-) to a variety of 'bitter', 'umami', 'sweet', 'salty' and 'sour' taste stimuli. All previous studies of how Gus-/- mice ingest taste stimuli have used long-term (i.e. 48 h) preference tests, which may be confounded by post-ingestive and/or experiential effects of the taste stimuli. We minimized these confounds by using a brief-access taste test, which quantifies immediate lick responses to extremely small volumes of sapid solutions. We found that deleting alpha-gustducin (i) dramatically reduced the aversiveness of a diverse range of 'bitter' taste stimuli; (ii) moderately decreased appetitive licking to low and intermediate concentrations of an 'umami' taste stimulus (monosodium glutamate in the presence of 100 microM amiloride), but virtually eliminated the normal aversion to high concentrations of the same taste stimulus; (iii) slightly decreased appetitive licking to 'sweet' taste stimuli; and (iv) modestly reduced the aversiveness of high, but not low or intermediate, concentrations of NaCl. There was no significant effect of deleting alpha-gustducin on licking responses to NH4Cl or HCl.  相似文献   

18.
The free fatty acids (FFAs), linoleic and oleic acids, commonly found in dietary fats can be detected by rats on the basis of gustatory cues following conditioned taste aversion pairings. FFAs depolarize the membrane potential of isolated rat taste receptor cells by inhibiting delayed rectifying potassium channels. This study examined the licking response of rats to sweet, salt, sour, and bitter taste solutions when 88 muM linoleic acid, 88 muM oleic acid, or an 88 muM linoleic-oleic acid mixture was added to the solutions. The presence of linoleic, oleic, and the linoleic-oleic acid mixture in sweet solutions produced increases in the licking responses, whereas adding linoleic, oleic, and the linoleic-oleic acid mixture to salt, sour, or bitter taste solutions produced decreases in licking responses when compared with the licking responses to the solutions in the absence of the FFAs. We conclude that FFAs may act in the oral cavity to depolarize taste receptor cells and therefore to increase the perceived intensity of concomitant tastants, thus contributing to the enhanced palatability associated with foods containing high dietary fat.  相似文献   

19.
The stimuli used in taste research are usually considered to be odourless. This was tested in two experiments with aqueous solutions of two representative compounds for each of the five taste qualities including umami. In the first experiment elderly and young subjects rated the intensity and pleasantness of three concentrations of the stimuli, while wearing or not wearing a noseclip. Saliva production was also measured. Blocking olfaction only influenced salivation for umami. It reduced taste intensity ratings, but as in an earlier experiment with the same compounds in food products, this effect was stronger in the young, who also liked the stimuli better wearing the noseclip. In the second experiment, another group of young people tried to detect the odours of the tastants dissolved in demineralized, double-distilled or Evian water. A considerable number of subjects could regularly detect seven of the ten tastants by olfaction and the extent to which they did correlated significantly with the reduction in taste intensity ratings for the different tastants found in the first experiment. We suggest that most tastants can be smelled and that this smell contributes to taste intensity ratings.  相似文献   

20.
The oxidization of fatty acids generates many volatile compounds forming an aroma, but little is known whether mammals use gustatory sense to detect the oxidized products as a taste or only use olfactory sense to detect as an aroma. We examined in this study the effect of aqueous extracts of the compounds from autoxidized arachidonic acid (AA) ethyl ester or hexanal which is the predominant component generated from oxidized AA by the anosmic mouse licking performance to a tastant. The addition of the water extract from oxidized AA or hexanal to a quinine hydrochloride (QHCl) solution decreased the anosmic mice licking frequency at several concentrations of QHCl. Hexanal also reduced the licking frequency of anosmic mice conditioned to avoid MSG at several concentrations of monosodium glutamate (MSG). These results suggest that hexanal would affect mouse taste perception to QHCl and MSG via the gustatory sensation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号