首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P < 0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P < 0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.  相似文献   

2.
Currently existing data show that the capability for long-chain PUFA (LC-PUFA) biosynthesis in teleost fish is more diverse than in other vertebrates. Such diversity has been primarily linked to the subfunctionalization that teleostei fatty acyl desaturase (Fads)2 desaturases have undergone during evolution. We previously showed that Chirostoma estor, one of the few representatives of freshwater atherinopsids, had the ability for LC-PUFA biosynthesis from C18 PUFA precursors, in agreement with this species having unusually high contents of DHA. The particular ancestry and pattern of LC-PUFA biosynthesis activity of C. estor make this species an excellent model for study to gain further insight into LC-PUFA biosynthetic abilities among teleosts. The present study aimed to characterize cDNA sequences encoding fatty acyl elongases and desaturases, key genes involved in the LC-PUFA biosynthesis. Results show that C. estor expresses an elongase of very long-chain FA (Elovl)5 elongase and two Fads2 desaturases displaying Δ4 and Δ6/Δ5 specificities, thus allowing us to conclude that these three genes cover all the enzymatic abilities required for LC-PUFA biosynthesis from C18 PUFA. In addition, the specificities of the C. estor Fads2 enabled us to propose potential evolutionary patterns and mechanisms for subfunctionalization of Fads2 among fish lineages.  相似文献   

3.
In mammals, 5,8,11-eicosatrienoic acid (Mead acid, 20:3n − 9) is synthesized from oleic acid during a state of essential fatty acid deficiency (EFAD). Mead acid is thought to be produced by the same enzymes that synthesize arachidonic acid and eicosapentaenoic acid, but the genes and the pathways involved in the conversion of oleic acid to Mead acid have not been fully elucidated. The levels of polyunsaturated fatty acids in cultured cells are generally very low compared to those in mammalian tissues. In this study, we found that cultured cells, such as NIH3T3 and Hepa1–6 cells, have significant levels of Mead acid, indicating that cells in culture are in an EFAD state under normal culture conditions. We then examined the effect of siRNA-mediated knockdown of fatty acid desaturases and elongases on the level of Mead acid, and found that knockdown of Elovl5, Fads1, or Fads2 decreased the level of Mead acid. This and the measured levels of possible intermediate products for the synthesis of Mead acid such as 18:2n − 9, 20:1n − 9 and 20:2n − 9 in the knocked down cells indicate two pathways for the synthesis of Mead acid: pathway 1) 18:1n − 9 → (Fads2) → 18:2n − 9 → (Elovl5) → 20:2n − 9 → (Fads1) → 20:3n − 9 and pathway 2) 18:1n − 9 → (Elovl5) → 20:1n − 9 → (Fads2) → 20:2n − 9 → (Fads1) → 20:3n − 9.  相似文献   

4.
5.
Functional characterization of the rat elongases, Elovl5 and Elovl2, has identified that Elovl2 is crucial for omega-3 docosahexaenoic acid (DHA) (22:6n-3) synthesis. While the substrate specificities of the rat elongases had some overlap, only Elovl2 can convert the C22 omega-3 PUFA docosapentaenoic acid (DPA) (22:5n-3) to 24:5n-3, which is the penultimate precursor of DHA. In order to better understand the potential for these elongases to be involved in DHA synthesis, we have examined the molecular reasons for the differences between Elovl5 and Elovl2 in their ability to elongate DPA to 24:5n-3. We identified a region of heterogeneity between Elovl5 and Elovl2 spanning transmembrane domains 6 and 7. Using a yeast expression system, we examined a series of Elovl2/Elovl5 chimeras and point mutations to identify Elovl2 residues within this region which are responsible for DPA substrate specificity. The results indicate that the cysteine at position 217 in Elovl2 and a tryptophan at the equivalent position in Elovl5 explain their differing abilities to elongate DPA to 24:5n-3. Further studies confirmed that Elovl2 C217 is a critical residue for elongation of DPA at the level observed in the native protein. Understanding the ability of elongases to synthesize 24:5n-3 may provide a basis for using sequence data to predict their ability to ultimately support DHA synthesis.  相似文献   

6.
7.

Background

Δ6-Desaturase (Fads2) is widely regarded as rate-limiting in the conversion of dietary α-linolenic acid (18:3n-3; ALA) to the long-chain omega-3 polyunsaturated fatty acid docosahexaenoic acid (22:6n-3; DHA). However, increasing dietary ALA or the direct Fads2 product, stearidonic acid (18:4n-3; SDA), increases tissue levels of eicosapentaenoic acid (20:5n-3; EPA) and docosapentaenoic acid (22:5n-3; DPA), but not DHA. These observations suggest that one or more control points must exist beyond ALA metabolism by Fads2. One possible control point is a second reaction involving Fads2 itself, since this enzyme catalyses desaturation of 24:5n-3 to 24:6n-3, as well as ALA to SDA. However, metabolism of EPA and DPA both require elongation reactions. This study examined the activities of two elongase enzymes as well as the second reaction of Fads2 in order to concentrate on the metabolism of EPA to DHA.

Methodology/Principal Findings

The substrate selectivities, competitive substrate interactions and dose response curves of the rat elongases, Elovl2 and Elovl5 were determined after expression of the enzymes in yeast. The competitive substrate interactions for rat Fads2 were also examined. Rat Elovl2 was active with C20 and C22 polyunsaturated fatty acids and this single enzyme catalysed the sequential elongation reactions of EPA→DPA→24:5n-3. The second reaction DPA→24:5n-3 appeared to be saturated at substrate concentrations not saturating for the first reaction EPA→DPA. ALA dose-dependently inhibited Fads2 conversion of 24:5n-3 to 24:6n-3.

Conclusions

The competition between ALA and 24:5n-3 for Fads2 may explain the decrease in DHA levels observed after certain intakes of dietary ALA have been exceeded. In addition, the apparent saturation of the second Elovl2 reaction, DPA→24:5n-3, provides further explanations for the accumulation of DPA when ALA, SDA or EPA is provided in the diet. This study suggests that Elovl2 will be critical in understanding if DHA synthesis can be increased by dietary means.  相似文献   

8.
Stearoyl-CoA desaturase-1 (SCD1) is a key enzyme in fatty acid and energy metabolism, but little is known about its nutritional regulation. Dietary methionine restriction in rats decreases hepatic Scd1 mRNA and protein, increases energy expenditure, and decreases fat-pad mass/body-weight% (FM/BW%). In humans, plasma concentrations of the methionine product, cysteine, are associated with obesity. To determine which consequences of methionine-restriction are mediated by decreased cysteine availability, we monitored obesity-related variables in 4 dietary groups for 12 weeks: control-fed (CF), methionine-restricted (MR), MR supplemented with 0.5% l-cysteine (MR+Cys) and CF+Cys rats. MR lowered weight gain and FM/BW% despite higher food intake/weight than CF, and lowered serum cysteine. Hepatic Scd1 expression was decreased, with decreased serum SCD1 activity indices (calculated from serum fatty acid profile), decreased serum insulin, leptin and triglycerides, and higher adiponectin. Cysteine supplementation (MR+Cys) essentially reversed all these phenotypes and raised serum cysteine but not methionine to CF levels. Adding extra cysteine to control diet (CF+Cys) increased serum taurine but did not affect serum cysteine, lipids, proteins, or total weight gain. FM/BW% and serum leptin were modestly decreased. Our results indicate that anti-obesity effects of MR are caused by low cysteine and that dietary sulfur amino acid composition contributes to SCD1 regulation.  相似文献   

9.
The versatility of algae and their lipid metabolism   总被引:1,自引:0,他引:1  
Eukaryotic algae are a very diverse group of organisms that are key components of ecosystems ranging from deserts to the Antarctic. They account for over half of the primary production at the base of food chains. The lipids of different classes are varied and contain unusual compounds not found in other phyla. In this short review, we introduce the major cellular lipids and their fatty acids and then describe how the latter (particularly the polyunsaturated fatty acids, PUFAs) are synthesised. The discovery of different elongases and desaturases important for PUFA production is detailed and their application for biotechnology described. Finally, the potential for algae in commercial applications is discussed, particularly in relation to the production of very long chain PUFAs and biofuel.  相似文献   

10.
Disturbances of lipid metabolism are a major problem in livestock fish and the present study analysed the different tissue expression patterns and regulations of 40 lipid-relevant genes in gilthead sea bream. Nineteen sequences, including fatty acid elongases (4), phospholipases (7), acylglycerol lipases (8) and lipase-maturating enzymes (1), were new for gilthead sea bream (GenBank, JX975700, JX975701, JX975702, JX975703, JX975704, JX975705, JX975706, JX975707, JX975708, JX975709, JX975710, JX975711, JX975712, JX975713, JX975714, JX975715, JX975716, JX975717 and JX975718). Up to six different lipase-related enzymes were highly expressed in adipose tissue and liver, which also showed a high expression level of Δ6 and Δ9 desaturases. In the brain, the greatest gene expression level was achieved by the very long chain fatty acid elongation 1, along with relatively high levels of Δ9 desaturases and the phospholipase retinoic acid receptor responder. These two enzymes were also expressed at a high level in white skeletal muscle, which also shared a high expression of lipid oxidative enzymes. An overall down-regulation trend was observed in liver and adipose tissue in response to fasting following the depletion of lipid stores. The white skeletal muscle of fasted fish showed a strong down-regulation of Δ9 desaturases in conjunction with a consistent up-regulation of the “lipolytic machinery” including key enzymes of tissue fatty acid uptake and mitochondrial fatty acid transport and oxidation. In contrast, the gene expression profile of the brain remained almost unaltered in fasted fish, which highlights the different tissue plasticity of lipid-related genes. Taken together, these findings provide new fish genomic resources and contribute to define the most informative set of lipid-relevant genes for a given tissue and physiological condition in gilthead sea bream.  相似文献   

11.
Hepatic fatty acid elongase-5 (Elovl-5) plays an important role in long chain monounsaturated and polyunsaturated fatty acid synthesis. Elovl-5 activity is regulated during development, by diet, hormones, and drugs, and in chronic disease. This report examines the impact of elevated Elovl-5 activity on hepatic function. Adenovirus-mediated induction of Elovl5 activity in livers of C57BL/6 mice increased hepatic and plasma levels of dihomo-gamma-linolenic acid (20:3,n-6) while suppressing hepatic arachidonic acid (20:4,n-6) and docosahexaenoic acid (22:6,n-3) content. The fasting-refeeding response of peroxisome proliferator-activated receptor alpha-regulated genes was attenuated in mice with elevated Elovl5 activity. In contrast, the fasting-refeeding response of hepatic sterol-regulatory element binding protein-1 (SREBP-1)-regulated and carbohydrate-regulatory element binding protein/Max-like factor X-regulated genes, Akt and glycogen synthase kinase (Gsk)-3beta phosphorylation, and the accumulation of hepatic glycogen content and nuclear SREBP-1 were not impaired by elevated Elovl5 activity. Hepatic triglyceride content and the phosphorylation of AMP-activated kinase alpha and Jun kinase 1/2 were reduced by elevated Elovl5 activity. Hepatic phosphoenolpyruvate carboxykinase expression was suppressed, while hepatic glycogen content and phosphorylated Gsk-3beta were significantly increased, in livers of fasted mice with increased Elovl5 activity. As such, hepatic Elovl5 activity may affect hepatic glucose production during fasting. In summary, Elovl5-induced changes in hepatic fatty acid content affect multiple pathways regulating hepatic lipid and carbohydrate composition.  相似文献   

12.
Studies on the application of functional lipids such as polyunsaturated fatty acids (PUFAs) have proceeded in various fields regarding health and dietary requirements in a search for novel and rich sources. Filamentous fungus Mortierella alpina 1S-4 produces triacylglycerols rich in arachidonic acid, ones reaching 20 g/L and containing 30–70% arachidonic acid as to the total fatty acids. Mutants derived from M. alpina 1S-4, defective in Δ5 and Δ6 desaturases, accumulate triacylglycerols rich in unique PUFAs, i.e., dihomo-γ-linolenic acid and Mead acid, respectively. Furthermore, various mutants derived from M. alpina 1S-4 have led to the production of oils containing n−1, n−3, n−4, n−6, n−7, and n−9 PUFAs. A variety of genes encoding fatty acid desaturases and elongases involved in PUFA biosynthesis in M. alpina 1S-4 has been isolated and characterized. Molecular breeding of M. alpina strains by means of manipulation of these genes facilitates improvement of PUFA productivity and elucidation of the functions of enzymes involved in PUFA biosynthesis.  相似文献   

13.
14.
15.
Induction of endoplasmic reticulum (ER) stress and apoptosis by elevated exogenous saturated fatty acids (FAs) plays a role in the pathogenesis of β-cell dysfunction and loss of islet mass in type 2 diabetes. Regulation of monounsaturated FA (MUFA) synthesis through FA desaturases and elongases may alter the susceptibility of β-cells to saturated FA-induced ER stress and apoptosis. Herein, stearoyl-CoA desaturase (SCD)1 and SCD2 mRNA expression were shown to be induced in islets from prediabetic hyperinsulinemic Zucker diabetic fatty (ZDF) rats, whereas SCD1, SCD2, and fatty acid elongase 6 (Elovl6) mRNA levels were markedly reduced in diabetic ZDF rat islets. Knockdown of SCD in INS-1 β-cells decreased desaturation of palmitate to MUFA, lowered FA partitioning into complex neutral lipids, and increased palmitate-induced ER stress and apoptosis. Overexpression of SCD2 increased desaturation of palmitate to MUFA and attenuated palmitate-induced ER stress and apoptosis. Knockdown of Elovl6 limited palmitate elongation to stearate, increasing palmitoleate production and attenuating palmitate-induced ER stress and apoptosis, whereas overexpression of Elovl6 increased palmitate elongation to stearate and palmitate-induced ER stress and apoptosis. Overall, these data support the hypothesis that enhanced MUFA synthesis via upregulation of SCD2 activity can protect β-cells from elevated saturated FAs, as occurs in prediabetic states. Overt type 2 diabetes is associated with diminished islet expression of SCD and Elovl6, and this can disrupt desaturation of saturated FAs to MUFAs, rendering β-cells more susceptible to saturated FA-induced ER stress and apoptosis.  相似文献   

16.
17.
Fish are the only major dietary source for humans of -3 highly unsaturated fatty acids (HUFAs) and with declining fisheries farmed fish such as Atlantic salmon (Salmo salar) constitute an increasing proportion of the fish in the human diet. However, the current high use of fish oils, derived from wild capture marine fisheries, in aquaculture feeds is not sustainable in the longer term and will constrain continuing growth of aquaculture activities. Greater understanding of how fish metabolize and biosynthesize HUFA may lead to more sustainable aquaculture diets. The study described here contributes to an effort to determine the molecular genetics of the HUFA biosynthetic pathway in salmon, with the overall aim being to determine mechanisms for optimizing the use of vegetable oils in Atlantic salmon culture. In this paper we describe the cloning and functional characterization of 2 genes from salmon involved in the biosynthesis of HUFA. A salmon desaturase complementary DNA, SalDes, was isolated that include an open reading frame of 1362 bp specifying a protein of 454 amino acids. The protein sequence includes all the characteristics of microsomal fatty acid desaturases, including 3 histidine boxes, 2 transmembrane regions, and an N-terminal cytochrome b5 domain containing a heme-binding motif similar to that of other fatty acid desaturases. Functional expression in the yeast Saccharomyces cerevisiae showed SalDes is predominantly an -3 5 desaturase, a key enzyme in the synthesis of eicosapentaenoic acid (20:5n-3) from -linolenic acid (18:3n-3). The desaturase showed only low levels of 6 activity toward C18 polyunsaturated fatty acids. In addition, a fatty acid elongase cDNA, SalElo, was isolated that included an open reading frame of 888 bp, specifying a protein of 295 amino acids. The protein sequence of SalElo included characteristics of microsomal fatty acid elongases, including a histidine box and a transmembrane region. Upon expression in yeast SalElo showed broad substrate specificity for polyunsaturated fatty acids with a range of chain lengths, with the rank order being C18 > C20 > C22. Thus this one polypeptide product displays all fatty acid elongase activities required for the biosynthesis of docosahexaenoic acid (22:6n-3) from 18:3n-3.  相似文献   

18.
19.
Successful treatment of obesity and related diseases by chronic food restriction requires the understanding of the effect of such nutritional therapy on the expression of genes which have been implicated to be involved in some diseases associated with obesity. The purpose of this study was to examine the effect of chronic food restriction and chronic food restriction/refeeding on lipogenic enzymes, especially the expression of genes encoding the stearoyl-CoA desaturase 1 (Scd1) and elongase6 (Elovl6) in rat liver and adipose tissue. We found that both chronic food restriction and chronic food restriction/refeeding caused increased expression of the Scd1 and Elovl6 genes in both the liver and adipose tissue. The increase was more pronounced in case of chronic food restriction/refeeding (several-fold increase) than that in chronic food restriction alone (two to threefold increase). Essentially, similar results were obtained when the expression of fatty acid synthase, acetyl-CoA carboxylase, ATP-citrate lyase, and malic enzyme genes was studied. Moreover, we found that chronic food restriction and short-term fasting exert opposite effects on the expression of lipogenic enzymes genes. The increased expression of the genes encoding Scd1, Elovl6, and other key lipogenic enzymes may favor fat storage after chronic food restriction/refeeding and may be part of the molecular mechanism by which food restriction/refeeding increases body weight and enhances susceptibility to insulin resistance.  相似文献   

20.
The long-standing paradigm establishing that global production of Omega-3 (n–3) long-chain polyunsaturated fatty acids (LC-PUFA) derived almost exclusively from marine single-cell organisms, was recently challenged by the discovery that multiple invertebrates possess methyl-end (or ωx) desaturases, critical enzymes enabling the biosynthesis of n–3 LC-PUFA. However, the question of whether animals with ωx desaturases have complete n–3 LC-PUFA biosynthetic pathways and hence can contribute to the production of these compounds in marine ecosystems remained unanswered. In the present study, we investigated the complete enzymatic complement involved in the n–3 LC-PUFA biosynthesis in Tigriopus californicus, an intertidal harpacticoid copepod. A total of two ωx desaturases, five front-end desaturases and six fatty acyl elongases were successfully isolated and functionally characterized. The T. californicus ωx desaturases enable the de novo biosynthesis of C18 PUFA such as linoleic and α-linolenic acids, as well as several n–3 LC-PUFA from n–6 substrates. Functions demonstrated in front-end desaturases and fatty acyl elongases unveiled various routes through which T. californicus can biosynthesize the physiologically important arachidonic and eicosapentaenoic acids. Moreover, T. californicus possess a Δ4 desaturase, enabling the biosynthesis of docosahexaenoic acid via the ‘Δ4 pathway’. In conclusion, harpacticoid copepods such as T. californicus have complete n–3 LC-PUFA biosynthetic pathways and such capacity illustrates major roles of these invertebrates in the provision of essential fatty acids to upper trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号