首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general mathematical model that predicts the flow fields in a mixed-flow anaerobic digester was developed. In this model, the liquid manure was assumed to be a non-Newtonian fluid, and the flow governed by the continuity, momentum, and k-epsilon standard turbulence equations, and non-Newtonian power law model. The commercial computational fluid dynamics (CFD) software, Fluent, was applied to simulate the flow fields of lab-scale, scale-up, and pilot-scale anaerobic digesters. The simulation results were validated against the experimental data from literature. The flow patterns were qualitatively compared for Newtonian and non-Newtonian fluids flow in a lab-scale digester. Numerical simulations were performed to predict the flow fields in scale-up and pilot-scale anaerobic digesters with different water pump power inputs and different total solid concentration (TS) in the liquid manure. The optimal power inputs were determined for the pilot-scale anaerobic digester. Some measures for reducing dead and low velocity zones were proposed based upon the CFD simulation results.  相似文献   

2.
Numerical simulation of mechanical mixing in high solid anaerobic digester   总被引:1,自引:0,他引:1  
Yu L  Ma J  Chen S 《Bioresource technology》2011,102(2):1012-1018
Computational fluid dynamics (CFD) was employed to study mixing performance in high solid anaerobic digester (HSAD) with A-310 impeller and helical ribbon. A mathematical model was constructed to assess flow fields. Good agreement of the model results with experimental data was obtained for the A-310 impeller. A systematic comparison for the interrelationship of power number, flow number and Reynolds number was simulated in a digester with less than 5% TS and 10% TS (total solids). The simulation results suggested a great potential for using the helical ribbon mixer in the mixing of high solids digester. The results also provided quantitative confirmation for minimum power consumption in HSAD and the effect of share rate on bio-structure.  相似文献   

3.
A computational fluid dynamics (CFD) model that simulates mechanical mixing for high-solids anaerobic digestion was developed. Numerical simulations of mixing manure slurry which exhibits non-Newtonian pseudo-plastic fluid behavior were performed for six designs: (i) one helical ribbon impeller; (ii) one anchor impeller; (iii) one curtain-type impeller; (iv) three counterflow (CF-2) impellers; (v) two modified high solidity (MHS 3/39°) impellers; and (vi) two pitched blade turbine impellers. The CFD model was validated against measurements for mixing a Herschel-Bulkley fluid by ribbon and anchor impellers. Based on mixing time with respect to mixing energy level, three impeller types (ribbon, CF-2, and MHS 3/39°) stand out when agitating highly viscous fluids, of these mixing with two MHS 3/39° impellers requires the lowest power input to homogenize the manure slurry. A comparison of digestion material demonstrates that the mixing energy varies with manure type and total solids concentration to obtain a given mixing time. Moreover, an in-depth discussion about the CFD strategy, the influences of flow regime and impeller type on mixing characteristics, and the intrinsic relation between mixing and flow field is included.  相似文献   

4.
A three-dimensional CFD model incorporating the rheological properties of sludge was developed and applied to quantify mixing in a full-scale anaerobic digester. The results of the model were found to be in good agreement with experimental tracer response curve. In order to predict the dynamics of mixing, a new parameter, UI (uniformity index) was defined. The visual patterns of tracer mixing in simulation were well reflected in the dynamic variation in the value of UI. The developed model and methods were applied to determine the required time for complete mixing in a full-scale digester at different solid concentrations. This information on mixing time is considered to be useful in optimizing the feeding cycles for better digester performance.  相似文献   

5.
Over 3.7 billion years of Earth history, life has evolved complex adaptations to help navigate and interact with the fluid environment. Consequently, fluid dynamics has become a powerful tool for studying ancient fossils, providing insights into the palaeobiology and palaeoecology of extinct organisms from across the tree of life. In recent years, this approach has been extended to the Ediacara biota, an enigmatic assemblage of Neoproterozoic soft-bodied organisms that represent the first major radiation of macroscopic eukaryotes. Reconstructing the ways in which Ediacaran organisms interacted with the fluids provides new insights into how these organisms fed, moved, and interacted within communities. Here, we provide an in-depth review of fluid physics aimed at palaeobiologists, in which we dispel misconceptions related to the Reynolds number and associated flow conditions, and specify the governing equations of fluid dynamics. We then review recent advances in Ediacaran palaeobiology resulting from the application of computational fluid dynamics (CFD). We provide a worked example and account of best practice in CFD analyses of fossils, including the first large eddy simulation (LES) experiment performed on extinct organisms. Lastly, we identify key questions, barriers, and emerging techniques in fluid dynamics, which will not only allow us to understand the earliest animal ecosystems better, but will also help to develop new palaeobiological tools for studying ancient life.  相似文献   

6.
The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) κ-ω model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport κ-ω model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment.  相似文献   

7.
An extensive investigation of anaerobic methane fermentation requires identifying the relationship between the physical environment and biological process. In this study, a computational fluid dynamics (CFD) technique was used to characterize bacterial fermentation mechanisms intertwined with mixing and heat transfer in anaerobic digesters. The results demonstrate that the methane yield remains almost unchanged while the energy efficiency decreases with increasing mixing power in a complete‐mix digester, and that the energy output increases nonlinearly with the increase in heating energy in a plug‐flow digester. The CFD method can be applied to other bioreactors to gain valuable insights into their behavior as well. Integrating flow and temperature with kinetic behavior for anaerobic digestion not only solves the controversy about how mixing influences the digestive process, but also assists in optimizing the digester design and increasing the efficiency of energy conversion, and additionally, provides a reference for improving the mixing guidelines recommended by the U.S. Environmental Protection Agency. Biotechnol. Bioeng. 2012; 109: 2864–2874. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A replicate long-term experiment was conducted using anaerobic digestion (AD) as a model process to determine the relative role of niche and neutral theory on microbial community assembly, and to link community dynamics to system performance. AD is performed by a complex network of microorganisms and process stability relies entirely on the synergistic interactions between populations belonging to different functional guilds. In this study, three independent replicate anaerobic digesters were seeded with the same diverse inoculum, supplied with a model substrate, α-cellulose, and operated for 362 days at a 10-day hydraulic residence time under mesophilic conditions. Selective pressure imposed by the operational conditions and model substrate caused large reproducible changes in community composition including an overall decrease in richness in the first month of operation, followed by synchronised population dynamics that correlated with changes in reactor performance. This included the synchronised emergence and decline of distinct Ruminococcus phylotypes at day 148, and emergence of a Clostridium and Methanosaeta phylotype at day 178, when performance became stable in all reactors. These data suggest that many dynamic functional niches are predictably filled by phylogenetically coherent populations over long time scales. Neutral theory would predict that a complex community with a high degree of recognised functional redundancy would lead to stochastic changes in populations and community divergence over time. We conclude that deterministic processes may play a larger role in microbial community dynamics than currently appreciated, and under controlled conditions it may be possible to reliably predict community structural and functional changes over time.  相似文献   

9.
The purpose of this research was to further investigate the hydrodynamics of the United States Pharmacopeia (USP) paddle dissolution apparatus using a previously generated computational fluid dynamics (CFD) model. The influence of paddle rotational speed on the hydrodynamics in the dissolution vessel was simulated. The maximum velocity magnitude for axial and tangential velocities at different locations in the vessel was found to increase linearly with the paddle rotational speed. Path-lines of fluid mixing, which were examined from a central region at the base of the vessel, did not reveal a region of poor mixing between the upper cylin-drical and lower hemispherical volumes, as previously speculated. Considerable differences in the resulting flow patterns were observed for paddle rotational speeds between 25 and 150 rpm. The approximate time required to achieve complete mixing varied between 2 to 5 seconds at 150 rpm and 40 to 60 seconds at 25 rpm, although complete mixing was achievable for each speed examined. An analysis of CFD-generated velocities above the top surface of a cylindrical compact positioned at the base of the vessel, below the center of the rotating paddle, revealed that the fluid in this region was undergoing solid body rotation. An examination of the velocity boundary layers adjacent to the curved surface of the compact revealed large peaks in the shear rates for a region within∼3 mm from the base of the compact, consistent with a ‘grooving’ effect, which had been previously seen on the surface of compacts following dissolution, associated with a higher dissolution rate in this region.  相似文献   

10.
This study uses the fluid-structure interaction (FSI) method to investigate the fluid flow in dental pulp. First, the FSI method is used for the biomechanical simulation of dental intrapulpal responses during force loading (50, 100 and 150 N) on a tooth. The results are validated by comparison with experimental outcomes. Second, the FSI method is used to investigate an intact tooth subjected to a mechanical stimulus during loading at various loading rates. Force loading (0–100 N) is applied gradually to an intact tooth surface with loading rates of 125, 62.5, 25 and 12.5 N/s, respectively, and the fluid flow changes in the pulp are evaluated. FSI analysis is found to be suitable for examining intrapulpal biomechanics. An external force applied to a tooth with a low loading rate leads to a low fluid flow velocity in the pulp chamber, thus avoiding tooth pain.  相似文献   

11.
Mixing in bioreactors is known to be crucial for achieving efficient mass and heat transfer, both of which thereby impact not only growth of cells but also product quality. In a typical bioreactor, the rate of transport of oxygen from air is the limiting factor. While higher impeller speeds can enhance mixing, they can also cause severe cell damage. Hence, it is crucial to understand the hydrodynamics in a bioreactor to achieve optimal performance. This article presents a novel approach involving use of computational fluid dynamics (CFD) to model the hydrodynamics of an aerated stirred bioreactor for production of a monoclonal antibody therapeutic via mammalian cell culture. This is achieved by estimating the volume averaged mass transfer coefficient (kLa) under varying conditions of the process parameters. The process parameters that have been examined include the impeller rotational speed and the flow rate of the incoming gas through the sparger inlet. To undermine the two‐phase flow and turbulence, an Eulerian‐Eulerian multiphase model and k‐ε turbulence model have been used, respectively. These have further been coupled with population balance model to incorporate the various interphase interactions that lead to coalescence and breakage of bubbles. We have successfully demonstrated the utility of CFD as a tool to predict size distribution of bubbles as a function of process parameters and an efficient approach for obtaining optimized mixing conditions in the reactor. The proposed approach is significantly time and resource efficient when compared to the hit and trial, all experimental approach that is presently used. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:613–628, 2016  相似文献   

12.
The concept of "design space" plays an integral part in implementation of quality by design for pharmaceutical products. ICH Q8 defines design space as "the multidimensional combination and interaction of input variables (e.g., material attributes) and process parameters that have been demonstrated to provide assurance of quality. Working within the design space is not considered as a change. Movement out of the design space is considered to be a change and would normally initiate a regulatory post-approval change process. Design space is proposed by the applicant and is subject to regulatory assessment and approval." Computational fluid dynamics (CFD) is increasingly being used as a tool for modeling of hydrodynamics and mass transfer. In this study, a laboratory-scale aerated bioreactor is modeled using CFD. Eulerian-Eulerian multiphase model is used along with dispersed k-ε turbulent model. Population balance model is incorporated to account for bubble breakage and coalescence. Multiple reference frame model is used for the rotating region. We demonstrate the usefulness of CFD modeling for evaluating the effects of typical process parameters like impeller speed, gas flow rate, and liquid height on the mass transfer coefficient (k(L)a). Design of experiments is utilized to establish a design space for the above mentioned parameters for a given permissible range of k(L)a.  相似文献   

13.
Various mechanical properties of single-walled carbon nanotubes (SWCNT) and double-walled carbon nanotubes (DWCNT) are evaluated using molecular dynamics (MD) simulations. A tensioning process was first performed on a SWCNT whose interaction is based on the Brenner’s ‘second generation’ potential under varying length–diameter ratios and strain rates, in order to understand the SWCNT’s behaviour under axial tension. The results showed an increase in the SWCNT’s ultimate tensile strength and a decrease in critical strain given the conditions of increasing strain rate and a decreasing length–diameter ratio. Comparison was done with previous studies on axial tensioning of SWCNT to validate the results obtained from the set-up, based on the general stress–strain relationship and key mechanical properties such as the strain at failure and the Young’s modulus. A DWCNT was then constructed, and Lennard-Jones ‘12-6’ potential was used to describe the energy present between the nanotube layers. Extraction of the inner tube in a DWCNT was performed using two inner wall tubings of different diameters to draw comparison to the energies needed to separate fully the outer and inner tubing. Finally, a bending test was performed on two DWCNTs with different intertube separations. Insights into the entire bending process were obtained through analyses of the variations in the strain energy characteristic of the surface atoms near the bending site, as the DWCNT is gradually bent until failure.  相似文献   

14.
Three anaerobic downflow stationary fixed-film (DSFF) reactors using multiple vertical clay channels of different heights (31, 92 and 183 cm) and treating bean blanching waste showed improved performance and mixing characteristics with increased reactor height. A start-up period of 100 days was necessary to achieve the best performance in terms of loading rate (up to 9.5 kg Chemical Oxygen Demand (COD) m?3 d?1) and methane production rate (up to 2.7 m3 m?3 d?1). During this period, differences in performance could only be related to the surface-to-volume ratio. At steady-state, mixing analysis indicated that the reactors deviated from the perfect-mixed pattern. Some dead space and shortcircuiting occurred. The amount of dead space due to biomass accumulation decreased as the reactor height increased (up to 44% for the shortest reactor). The COD removal efficiency was dependent on loading rate, decreasing from 90% at a loading rate of 1.0 kg COD m?3 d?1 to 75% at 7.0 kg COD m?3 d?1. However, the effect was more pronounced in the shortest reactor than in the tallest one. The improvement in mixing characteristics in the tallest reactor could be related to the higher liquid velocity inside channels which in turn permitted better support utilization and concomitant better COD removal. Data also suggest that it may be preferable to scale-up vertically rather than horizontally in order to maximize the liquid velocity in the channels.  相似文献   

15.
Microbial population dynamics were investigated during start-up and during periods of overload conditions in anaerobic co-digesters treating municipal solid waste and sewage sludge. Changes in community structure were monitored using ribosomal RNA-based oligonucleotide probe hybridization to measure the abundance of syntrophic propionate-oxidizing bacteria (SPOB), saturated fatty acid-beta-oxidizing syntrophs (SFAS), and methanogens. These changes were linked to traditional performance parameters such as biogas production and volatile fatty acid (VFA) concentrations. Digesters with high levels of Archaea started up successfully. Methanosaeta concilii was the dominant aceticlastic methanogen in these systems. In contrast, digesters that experienced a difficult start-up period had lower levels of Archaea with proportionally more abundant Methanosarcina spp. Syntrophic propionate-oxidizing bacteria and saturated fatty acid-beta-oxidizing syntrophs were present at low levels in all digesters, and SPOB appeared to play a role in stabilizing propionate levels during start-up of one digester. Digesters with a history of poor performance tolerated a severe organic overload event better than digesters that had previously performed well. It is hypothesized that higher levels of SPOB and SFAS and their methanogenic partners in previously unstable digesters are responsible for this behavior.  相似文献   

16.
Bubble flows in non-Newtonian fluids were analyzed using first-principles methods with the aim to compute and predict mass transfer coefficients in such fermentation media. The method we used is a Direct Numerical Simulation (DNS) of the reactive multiphase flow with deformable boundaries and interfaces. With this method, we are able for the first time to calculate mass transfer coefficients in non-Newtonian liquids of different rheologies without any experimental data. In the current article, shear-thinning fluids are considered. However, the results provide the basis for further investigations, such as the study of viscoelastic fluids.  相似文献   

17.
Efforts to model the human upper respiratory system have undergone many phases. Geometrical proximity to the realistic shape has been the subject of many research projects. In this study, three different geometries of the trachea and main bronchus were modelled, which were reconstructed from computed tomography (CT) scan images. The geometrical variations were named realistic, simplified and oversimplified. Realistic refers to the lifelike image taken from digital imaging and communications in medicine format CT scan images, simplified refers to the reconstructed image based on natural images without realistic details pertaining to the rough surfaces, and oversimplified describes the straight wall geometry of the airway. The characteristics of steady state flows with different flow rates were investigated, simulating three varied physical activities and passing through each model. The results agree with previous studies where simplified models are sufficient for providing comparable results for airflow in human airways. This work further suggests that, under most exercise conditions, the idealised oversimplified model is not favourable for simulating either airflow regimes or airflow with particle depositions. However, in terms of immediate analysis for the prediction of abnormalities of various dimensions of human airways, the oversimplified techniques may be used.  相似文献   

18.
This study compares the effect of a rapid increase of the digester temperature (from 54 degrees C to 58 degrees C in 2 weeks) with a slow increase (from 53.9 degrees C to 57.2 degrees C at a rate of 0.55 degrees C per month) on full-scale thermophilic anaerobic digestion at Hyperion Treatment Plant. The short-term test demonstrated that rapidly increasing the digester temperature caused elevated production of volatile sulfur compounds, most notably methyl mercaptan, but volatile solids destruction and methane production were not significantly affected. The increase of the volatile fatty acid to alkalinity ratio from 0.1 to over 0.3 indicated a transient change in digester biochemistry, which was reversed by lowering the temperature. In the long term-test, a slow increase of digester temperature, the production of hydrogen sulfide increased above temperatures of 56.1 degrees C, but was controlled by increased injection of ferrous chloride. Methyl mercaptan was detected in trace amounts at the highest temperature tested (57.2 degrees C). This test showed insignificant effects on other digestion parameters, although some temperature-independent changes were observed that could have been seasonal effects over the year that the long-term test lasted. Thus a slow temperature increase was preferable. This observation contrasts with previous results showing the desirability of a rapid temperature rise to first establish a thermophilic culture when converting from mesophilic operation. Further research is warranted on temperature limits and process changes to optimize thermophilic anaerobic digestion.  相似文献   

19.
Understanding cardiac blood flow patterns has many applications in analysing haemodynamics and for the clinical assessment of heart function. In this study, numerical simulations of blood flow in a patient-specific anatomical model of the left ventricle (LV) and the aortic sinus are presented. The realistic 3D geometry of both LV and aortic sinus is extracted from the processing of magnetic resonance imaging (MRI). Furthermore, motion of inner walls of LV and aortic sinus is obtained from cine-MR image analysis and is used as a constraint to a numerical computational fluid dynamics (CFD) model based on the moving boundary approach. Arbitrary Lagrangian–Eulerian finite element method formulation is used for the numerical solution of the transient dynamic equations of the fluid domain. Simulation results include detailed flow characteristics such as velocity, pressure and wall shear stress for the whole domain. The aortic outflow is compared with data obtained by phase-contrast MRI. Good agreement was found between simulation results and these measurements.  相似文献   

20.
The acinus consists of complex, branched alveolar ducts and numerous surrounding alveoli, and so in this study, we hypothesized that the particle deposition can be much influenced by the complex acinar geometry, and simulated the airflow and particle deposition (density = 1.0 g/cm3, diameter = 1 and 3 μm) numerically in a pulmonary acinar model based on synchrotron micro-CT of the mammalian lung. We assumed that the fluid–structure interaction was neglected and that alveolar flow was induced by the expansion and contraction of the acinar model with the volume changing sinusoidally with time as the moving boundary conditions. The alveolar flow was dominated by radial flows, and a weak recirculating flow was observed at the proximal side of alveoli during the entire respiratory cycle, despite the maximum Reynolds number at the inlet being 0.029. Under zero gravity, the particle deposition rate after single breathing was less than 0.01, although the particles were transported deeply into the acinus after inspiration. Under a gravitational field, the deposition rate and map were influenced strongly by gravity orientation. In the case of a particle diameter of 1 μm, the rate increased dramatically and mostly non-deposited particles remained in the model, indicating that the rate would increase further after repeated breathing. At a particle diameter of 3 μm, the rate was 1.0 and all particles were deposited during single breathing. Our results show that the particle deposition rate in realistic pulmonary acinar model is higher than in an idealized model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号