首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background aimsThe aim was to evaluate cartilage regeneration in animal models involving induced knee joint damage. Through cell-mediated gene therapy methods, a cell mixture comprising a 3:1 ratio of genetically unmodified human chondrocytes and transforming growth factor beta-1 (TGF-β1)-secreting human chondrocytes (TG-C), generated via retroviral transduction, resulted in successful cartilage proliferation in damaged regions.MethodsNon-clinical toxicology assessments for efficacy, biodistribution and local/systemic toxicity of single intra-articular administration of the cell mixture in mice, rabbits and goats was conducted.ResultsAdministration of the mixture was tolerated well in all of the species. There was evidence of cartilage proliferation in rabbits and goats. As an additional precautionary step, the efficacy of TGF-β1 secretion in irradiated human chondrocytes was also demonstrated.ConclusionsFour studies in rabbits and goats demonstrated the safety and efficacy of TG-C following direct intra-articular administration in animal models involving induced knee joint damage. Based on these pre-clinical studies authorization has been received from the USA Food and Drug Administration (FDA) to proceed with an initial phase I clinical study of TG-C for degenerative arthritis.  相似文献   

2.
To examine the effect of transforming growth factor (TGF)-β1 on the regulation of cartilage synthesis and other articular pathologies, we used adenovirus-mediated intra-articular gene transfer of TGF-β1 to both naïve and arthritic rabbit knee joints. Increasing doses of adenoviral vector expressing TGF-β1 were injected into normal and antigen-induced arthritis rabbit knee joints through the patellar tendon, with the same doses of an adenoviral vector expressing luciferase injected into the contralateral knees as the control. Intra-articular injection of adenoviral vector expressing TGF-β1 into the rabbit knee resulted in dose-dependent TGF-β1 expression in the synovial fluid. Intra-articular TGF-β1 expression in both naïve and arthritic rabbit knee joints resulted in significant pathological changes in the rabbit knee as well as in adjacent muscle tissue. The observed changes induced by elevated TGF-β1 included inhibition of white blood cell infiltration, stimulation of glycosaminoglycan release and nitric oxide production, and induction of fibrogenesis and muscle edema. In addition, induction of chondrogenesis within the synovial lining was observed. These results suggest that even though TGF-β1 may have anti-inflammatory properties, it is unable to stimulate repair of damaged cartilage, even stimulating cartilage degradation. Gene transfer of TGF-β1 to the synovium is thus not suitable for treating intra-articular pathologies.  相似文献   

3.
The purpose of this study was to evaluate the mechanism of crosstalk between the type II collagen and TGF-β1 signaling pathways in chondrocytic cells. Articular chondrocytes, isolated from porcine knee cartilage, and the SW1353 cell line were cultured on either type II collagen-coated or -uncoated plates in the presence or absence of TGF-β1. Expression of pSMAD 2, pSMAD 3, pFAKY397 and pFAKY925 in articular chondrocytes and the SW1353 cell line was analyzed by immunoblotting. Cell proliferation rates and glycosaminoglycan (GAG) content was determined after treatment with type II collagen or/and TGF-β1. For inhibition study, human FAK-specific RNA small interference (siFAK) in SW1353 cell line was performed. In this study, expression of pSMAD 2, pSMAD 3, pFAKY397 and pFAKY925 were synergistically increased by co-treatment with type II collagen and TGF-β1 in articular chondrocytes. The proliferation of porcine articular chondrocytes and GAG secretion in SW1353 cells were synergistically increased by co-stimulation with type II collagen and TGF-β1. Synergistically increased expression and nuclear translocation of pSMAD 2 and pSMAD 3 and GAG secretion of SW1353 cells were significantly inhibited by siFAK transfection. Therefore, we suggest that FAK-SMAD 2/3 mediates signal crosstalk between type II collagen and TGF-β1 and regulates GAG secretion in chondrocytic cells.  相似文献   

4.
Connexin 43 (Cx43)-mediated gap junction intercellular communication (GJIC) plays a crucial role in the pathology and physiology of joint tissues. Transforming growth factor-β2 (TGF-β2), one of the potent regulatory factors in chondrocytes, plays a key role in the regulation of cell cycle and development of joint diseases. However, it is still unknown how TGF-β2 mediates GJIC in chondrocytes. The aim of this study was to explore the potential mechanism by which TGF-β2 regulates GJIC in chondrocytes. CCK-8 assays and scratch assays were performed to define the role of TGF-β2 on cell proliferation and migration. The scrape loading/dye transfer assay and scanning electron microscopy (SEM) were used to verify the effect of TGF-β2 on GJIC between chondrocytes. qPCR was performed to analyse the expression of genes in the gap junction protein family in chondrocytes. The expression of the Cx43 protein and phosphorylated Smad3 (p-Smad3) was evaluated by western blot assay. Immunofluorescence staining was used to explore p-Smad3 signalling pathway activation and Cx43 distribution. From these experiments, we found that the Cx43 protein was the most highly expressed member of the gap junction protein family in chondrocytes. We also found that TGF-β2 facilitated cell-to-cell communication in chondrocytes by upregulating Cx43 expression in chondrocytes. Finally, we found that TGF-β2 activated Smad3 signalling and promoted the nuclear aggregation of p-Smad3. Inhibition experiments by SIS3 also confirmed that TGF-β2-mediated GJIC through p-Smad3 signalling. For the first time, this study confirmed that TGF-β2 could regulate the formation of Cx43-mediated GJIC in chondrocytes via the canonical p-Smad3 signalling pathway.  相似文献   

5.
The transforming growth factors β1 (TGF-β1) and TGF-β2, as two distinct homodimers of TGF-β superfamily, involve in chondrocyte growth and differentiation. Emerging evidence has implied that strontium (Sr) plays an important role in the bone formation and resorption, and has strong effects on stimulating human cartilage matrix formation in vitro. However, the direct effects of Sr on TGF-β1 and TGF-β2 expressions in chondrocytes are not entirely clear. The purpose of this study was to evaluate the influence of different Sr concentrations on the expression of TGF-β1 and TGF-β2 in rat chondrocytes in vitro. Chondrocytes were isolated from Wistar rat articular by enzymatic digestion. Strontium chloride hexahydrate (SrCl2·6H2O) was used as a Sr source in this study. Sr was added to the culture solution at final concentrations of 0, 0.5, 1.0, 2.0, 5.0, 20.0, and 100 μg/mL. After 72 h of continuous culture, TGF-β1 and TGF-β2 mRNA abundance and protein expression levels in the chondrocytes were determined by real-time polymerase chain reaction (real-time PCR) and Western blot, respectively. The results showed that TGF-β1 and TGF-β2 expressions in chondrocytes increased dose-dependently with Sr concentration. The mRNA abundance of TGF-β1 and TGF-β2 were markedly higher than those observed for control (P?<?0.01) when the Sr-treated concentration exceeded 1.0 and 5.0 μg/mL, respectively. The TGF-β1 and TGF-β2 protein expression levels were extremely significantly higher than those in the control group (P?<?0.01) at above 5.0 μg/mL Sr-treatment. These results indicated that Sr could involve in the chondrocytes metabolism via regulating TGF-β1 and TGF-β2 signalling.  相似文献   

6.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.  相似文献   

7.
8.
《Cytotherapy》2019,21(5):535-545
BackgroundRegulatory T cells (Tregs) suppress excessive immune responses and play a crucial protective role in acute kidney injury (AKI). The aim of this study was to examine the therapeutic potential of transforming growth factor (TGF)-β1-overexpressing mesenchymal stromal cells (MSCs) in inducing local generation of Tregs in the kidney after ischemia/reperfusion (I/R) injury.MethodsMSCs were transduced with a lentiviral vector expressing the TGF-β1 gene; TGF-β1-overexpressing MSCs (designated TGF-β1/MSCs) were then transfused into the I/R-injured kidney via the renal artery.ResultsMSCs genetically modified with TGF-β1 achieved overexpression of TGF-β1. Compared with green fluorescent protein (GFP)/MSCs, TGF-β1/MSCs markedly improved renal function after I/R injury and reduced epithelial apoptosis and subsequent inflammation. The enhanced immunosuppressive and therapeutic abilities of TGF-β1/MSCs were associated with increased generation of induced Tregs and improved intrarenal migration of the injected cells. Futhermore, the mechanism of TGF-β1/MSCs in attenuating renal I/R injury was not through a direct canonical TGF-β1/Smad pathway.ConclusionTGF-β1/MSCs can induce a local immunosuppressive effect in the I/R-injured kidney. The immunomodulatory activity of TGF-β1–modified MSCs appears to be a gateway to new therapeutic approaches to prevent renal I/R injury.  相似文献   

9.
The objectives of this study were to establish a growth factor response profile for adult human articular chondrocytes, to determine whether this is unique for chondrocytes or influenced by the differentiation status of the cells, and to characterize growth factor interactions. It is shown that transforming growth factor-β (TGF-β) is the most potent mitogen among a variety of factors tested. All three isoforms of TGF-β caused similar dose-dependent increases in chondrocyte proliferation. Other members of the TGF-β family, including bone morphogenetic protein 2B (BMP2B), activin, and inhibin, did not detectably increase chondrocyte proliferation. Platelet-derived growth factor-AA (PDGF-AA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1) also stimulated proliferation but were less effective than TGF-β. In contrast to findings with other cell types, the effects of TGF-β on chondrocyte proliferation were not dependent on the endogenous production of PDGF. The cytokines Interleukin 1 (IL-1) and tumor necrosis factor-α (TNF-α) gave no stimulation, but IL-1 inhibited chondrocyte proliferation induced by TGF-β or serum. This response profile was characteristic for primary chondrocytes from human adults and distinct from subcultured (dedifferentiated) chondrocytes or skin fibroblasts. The latter preferentially responded to PDGF, and IL-1 caused greater increases in proliferation than TGF-β. In summary, these results describe growth factor responses that are characteristic for chondrocytes and provide a basis for the analysis of changes in chondrocyte growth proliferation that occur in aging and tissue injury. © 1994 Wiley-Liss, Inc.  相似文献   

10.
《Organogenesis》2013,9(1):28-32
Human articular cartilage is an avascular structure, which, when injured, poses significant hurdles to repair strategies. Not only does the defect need to be repopulated with cells, but preferentially with hyaline-like cartilage.

Successful tissue engineering relies on four specific criteria: cells, growth factors, scaffolds, and the mechanical environment. The cell population utilized may originate from cartilage itself (chondrocytes) or growth factors may direct the development of mesenchymal stem cells toward a chondrogenic phenotype. These stem cells may originate from various mesenchymal tissues including bone marrow, synovium, adipose tissue, skeletal muscle, and periosteum. Another unique population of multipotent cells arises from Wharton’s jelly in human umbilical cords. A number of growth factors have been associated with chondrogenic differentiation of stem cells and maintenance of the chondrogenic phenotype by chondrocytes in vitro, including TGF-β; BMP-2, 4, and 7; IGF-1; and GDF-5.

The scaffolds chosen for effective tissue engineering with respect to cartilage repair can be protein based (collagen, fibrin, and gelatin), carbohydrate based (hyaluronan, agarose, alginate, PLLA/PGA, and chitosan), or formed by hydrogels. Mechanical compression, fluid-induced shear stress, and hydrostatic pressure are all aspects of mechanical loading found in the human knee joint, both during gait and at rest. Utilizing these factors may assist in stimulating the development of more robust cells for implantation.

Effective tissue engineering has the ability to improve the quality of life of millions of patients and delay future medical costs related to joint arthroplasty and associated procedures.  相似文献   

11.
BackgroundOsteoarthritis (OA) is a common degenerative joint disease. The pathogenesis of OA is closely related to inflammatory responses and apoptosis of chondrocytes. Hyperoside (Hyp), a natural flavonoid compound, exerts multiple bioactivities in various diseases.PurposeOur study aims to investigate the anti-arthritic effects of Hyp and delineate the potential mechanism at the cellular level.MethodsMurine chondrocytes were stimulated with interleukin-1β (IL-1β) with or without Hyp treatment. CCK-8 assay was used to evaluate the cytotoxic effect of Hyp. DCFH-DA was used to detect intracellular ROS. Annexin V-FITC/PI method was applied to examine apoptosis of chondrocytes. The anti-arthritic effects of Hyp and related mechanisms were investigated by examining and analyzing relative markers through quantitative PCR, western blot analysis and immunofluorescent staining. C57BL/6 mice were performed the destabilized medial meniscus (DMM) surgery to establish OA model and then injected intraperitoneally with Hyp (20 mg/kg)) for 4 or 8 weeks. Finally, mice were sacrificed and knee joints were collected for histological observation and analysis.ResultsHyp inhibited IL-1β-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Additionally, Hyp attenuated IL-1β-induced destruction of the extracellular matrix (ECM) by downregulating the expression of MMPs and ADAMTS5, and meanwhile upregulating the expression of collagen II, aggrecan, and SOX9. Also, Hyp pretreatment reduced IL-1β-induced overproduction of ROS and apoptosis of chondrocytes. Mechanistically, Hypexerted anti-inflammatory effects by partly suppressing the PI3K/AKT/NF-κB and the MAPK signaling pathways, enhancing the Nrf2/HO-1 to limit the activation of NF-κB. Moreover, Hyp played an anti-apoptotic effect via the Nrf2/ROS/BAX/Bcl-xlaxis. In vivo, cartilage degradation was attenuated with a lower OARSI score in Hyp-treated group compared to the DMM group.ConclusionOur study demonstrated that anti-arthritic effects of Hyp in vitro and in vivo, indicating Hyp might serve as a potential agent for the treatment of OA.  相似文献   

12.
《Cellular signalling》2014,26(5):951-958
BackgroundBoth Wnt signaling and TGF-β signaling have been implicated in the regulation of the phenotype of many cell types including chondrocytes, the only cell type present in the articular cartilage. A changed chondrocyte phenotype, resulting in chondrocyte hypertrophy, is one of the main hallmarks of osteoarthritis. TGF-β signaling via activin-like kinase (ALK)5, resulting in Smad 2/3 phosphorylation, inhibits chondrocyte hypertrophy. In contrast, TGF-β signaling via ALK1, leading to Smad 1/5/8 phosphorylation, has been shown to induce chondrocyte hypertrophy. In this study, we investigated the capability of Wnt3a and WISP1, a protein downstream in canonical Wnt signaling, to skew TGF-β signaling in chondrocytes from the protective Smad 2/3 towards the Smad 1/5/8 pathway.ResultsStimulation with Wnt3a, either alone or in combination with its downstream protein WISP1, decreased TGF-β-induced C-terminal phosphorylation of Smad 2/3. In addition, both Wnt3a and WISP1 increased Smad 1/5/8 phosphorylation at the C-terminal domain in both murine and human chondrocytes. DKK-1, a selective inhibitor of canonical Wnt signaling, abolished these effects. TGF-β signaling via Smad 2/3, measured by the functional CAGA12-Luc reporter construct activity, was decreased by stimulation with Wnt3a in accordance with the decrease in Smad 2/3 phosphorylation found on Western blot. Furthermore, in vivo overexpression of the canonical Wnt8a decreased Smad 2/3 phosphorylation and increased Smad 1/5/8 phosphorylation.ConclusionsOur data show that canonical Wnt signaling is able to skew TGF-β signaling towards dominant signaling via the ALK1/Smad 1/5/8 pathway, which reportedly leads to chondrocyte hypertrophy. In this way canonical Wnts and WISP1, which we found to be increased during experimental osteoarthritis, may contribute to osteoarthritis pathology.  相似文献   

13.
In this study we examine the extracellular role of galectin-3 (gal-3) in joint tissues. Following intra-articular injection of gal-3 or vehicle in knee joints of mice, histological evaluation of articular cartilage and subchondral bone was performed. Further studies were then performed using human osteoarthritic (OA) chondrocytes and subchondral bone osteoblasts, in which the effect of gal-3 (0 to 10 μg/ml) was analyzed. Osteoblasts were incubated in the presence of vitamin D3 (50 nM), which is an inducer of osteocalcin, encoded by an osteoblast terminal differentiation gene. Genes of interest mainly expressed in either chondrocytes or osteoblasts were analyzed with real-time RT-PCR and enzyme immunoassays. Signalling pathways regulating osteocalcin were analyzed in the presence of gal-3. Intra-articular injection of gal-3 induced knee swelling and lesions in both cartilage and subchondral bone. On human OA chondrocytes, gal-3 at 1 μg/ml stimulated ADAMTS-5 expression in chondrocytes and, at higher concentrations (5 and 10 μg/ml), matrix metalloproteinase-3 expression. Experiments performed with osteoblasts showed a weak but bipolar effect on alkaline phosphatase expression: stimulation at 1 μg/ml or inhibition at 10 μg/ml. In the absence of vitamin D3, type I collagen alpha 1 chain expression was inhibited by 10 μg/ml of gal-3. The vitamin D3induced osteocalcin was strongly inhibited in a dose-dependent manner in the presence of gal-3, at both the mRNA and protein levels. This inhibition was mainly mediated by phosphatidylinositol-3-kinase. These findings indicate that high levels of extracellular gal-3, which could be encountered locally during the inflammatory process, have deleterious effects in both cartilage and subchondral bone tissues.  相似文献   

14.
BackgroundThe growing prevalence of osteoarthritis (OA) and the medical costs associated with total knee replacement (TKR) surgery for end-stage OA motivate a search for agents that can delay OA progression. We test a hypothesis that hyaluronic acid (HA) injection is associated with delay of TKR in a dose-dependent manner.ConclusionsHA injection in patients with knee OA is associated with a dose-dependent increase in time-to-TKR.  相似文献   

15.
《Cytotherapy》2022,24(1):72-85
Background aimsInfrapatellar fat pad-derived mesenchymal stromal cells (IFP-MSCs) have not yet been used in a human clinical trial. In this open-label phase 1 study, patients with knee osteoarthritis (OA) received a single intra-articular injection of autologous IFP-MSCs. Safety was assessed through physical examination of the knee joint, vital signs, laboratory tests and adverse events. Efficacy was evaluated with regard to pain and function using questionnaires, x-ray and magnetic resonance imaging (MRI). Indoleamine-2,3-dioxygenase (IDO) expression in IFP-MSCs primed with interferon gamma was used as an in vitro potency measurement in investigating the correlations of clinical outcomes.MethodsTwelve patients with symptomatic knee OA were recruited. IFP adipose tissue was harvested from each patient's knee through surgical excision for IFP-MSC manufacturing. Cryopreserved IFP-MSCs (5 × 107 cells) were injected into the knee joint immediately after thawing.ResultsNo significant adverse events were observed. Patients who received IFP-MSCs exhibited clinically significant pain and functional improvement at 48-week follow-up. The MRI Osteoarthritis Knee Score average was also significantly reduced from 100.2 before injection to 85.0 at 48 weeks after injection. The IDO expression of the primed IFP-MSCs of the 12 patients was correlated with clinical outcomes after injection.ConclusionsA single intra-articular injection of IFP-MSCs appears to be a safe therapy for treating knee OA and may improve disease symptoms. IDO measurement of primed IFP-MSCs has potential as a potency marker of MSC products for immunomodulatory therapy.  相似文献   

16.
17.
18.
为研究TGF β1 SMAD3信号对小鼠软骨细胞增殖和分化的影响 ,分离了野生型与Smad3基因剔除 (Smad3ex8 ex8)突变纯合子小鼠肋骨软骨细胞并进行了体外培养 .通过3 H TdR参入实验检测了体外培养软骨细胞的增殖能力 .TGF β1可以刺激野生型软骨细胞的增殖 ,Smad3基因缺失导致小鼠软骨细胞丧失对TGF β1刺激生长作用的应答 .Northern杂交显示 ,TGF β1促进野生型小鼠软骨细胞表达Ⅱ型胶原 ,而Smad3基因缺失突变纯合子软骨细胞大量表达肥大性软骨细胞的分子标记物X型胶原 .结果表明 ,SMAD3介导转化生长因子TGF β1刺激软骨细胞增殖并抑制软骨细胞的肥大性分化  相似文献   

19.
Our objective was to evaluate the age-dependent mechanical phenotype of bone marrow stromal cell- (BMSC-) and chondrocyte-produced cartilage-like neo-tissue and to elucidate the matrix-associated mechanisms which generate this phenotype. Cells from both immature (2–4 month-old foals) and skeletally-mature (2–5 year-old adults) mixed-breed horses were isolated from animal-matched bone marrow and cartilage tissue, encapsulated in self-assembling-peptide hydrogels, and cultured with and without TGF-β1 supplementation. BMSCs and chondrocytes from both donor ages were encapsulated with high viability. BMSCs from both ages produced neo-tissue with higher mechanical stiffness than that produced by either young or adult chondrocytes. Young, but not adult, chondrocytes proliferated in response to TGF-β1 while BMSCs from both age groups proliferated with TGF-β1. Young chondrocytes stimulated by TGF-β1 accumulated ECM with 10-fold higher sulfated-glycosaminoglycan content than adult chondrocytes and 2–3-fold higher than BMSCs of either age. The opposite trend was observed for hydroxyproline content, with BMSCs accumulating 2–3-fold more than chondrocytes, independent of age. Size-exclusion chromatography of extracted proteoglycans showed that an aggrecan-like peak was the predominant sulfated proteoglycan for all cell types. Direct measurement of aggrecan core protein length and chondroitin sulfate chain length by single molecule atomic force microscopy imaging revealed that, independent of age, BMSCs produced longer core protein and longer chondroitin sulfate chains, and fewer short core protein molecules than chondrocytes, suggesting that the BMSC-produced aggrecan has a phenotype more characteristic of young tissue than chondrocyte-produced aggrecan. Aggrecan ultrastructure, ECM composition, and cellular proliferation combine to suggest a mechanism by which BMSCs produce a superior cartilage-like neo-tissue than either young or adult chondrocytes.  相似文献   

20.
The repair of articular cartilage following papain injection into the knee joint of the guinea pig was studied by light and electron microscopy, as well as by autoradiography using tritiated thymidine. Papain injection rapidly produced complete degradation of cartilage proteoglycan. Although a number of chondrocytes were also destroyed, the remaining chondrocytes showed mitotic cell division with resultant formation of cell clusters. Such chondrocytic regeneration, however, did not contribute significantly to the repair of cartilage tissue. On the other hand, mesenchymal cells proliferated from the transition zone and extended over the surface of the damaged cartilage. At the peripheral portion of the articular surface, they migrated and differentiated into chondrocytes with the formation of abundant intercellular matrix to produce hyaline cartilage. From these findings, it was apparent that mesenchymal cells in the transition zone were actively engaged in the repair of articular cartilage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号