首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Binocular rivalry is a fascinating perceptual phenomenon that has been characterized extensively at the psychophysical level. However, the underlying neural mechanism remains poorly understood. In particular, the role of the early visual pathway remains controversial. In this study, we used voltage-sensitive dye imaging to measure the spatiotemporal activity patterns in cat area 18 evoked by dichoptic orthogonal grating stimuli. We found that after several seconds of monocular stimulation with an oriented grating, an orthogonal stimulus to the other eye evoked a reversal of the cortical response pattern, which may contribute to flash suppression in perception. Furthermore, after several seconds of rival binocular stimulation with unequal contrasts, transient increase in the contrast of the weak stimulus evoked a long-lasting cortical response. This transient-triggered response could contribute to the perceptual switch during binocular rivalry. Together, these results point to a significant contribution of early visual cortex to transient-triggered switch in perceptual dominance.  相似文献   

2.
The neural mechanisms involved in the selective processing of salient or behaviourally important stimuli are uncertain. We used an aversive conditioning paradigm in human volunteer subjects to manipulate the salience of visual stimuli (emotionally expressive faces) presented during positron emission tomography (PET) neuroimaging. Increases in salience, and conflicts between the innate and acquired value of the stimuli, produced augmented activation of the pulvinar nucleus of the right thalamus. Furthermore, this pulvinar activity correlated positively with responses in structures hypothesized to mediate value in the brain right amygdala and basal forebrain (including the cholinergic nucleus basalis of Meynert). The results provide evidence that the pulvinar nucleus of the thalamus plays a crucial modulatory role in selective visual processing, and that changes in perceptual salience are mediated by value-dependent plasticity in pulvinar responses.  相似文献   

3.
The responses of the rabbit's visual cortical neurons to paired and rhythmic punctiform stimulation of their receptive fields were compared with responses to diffuse photic stimuli and the electric stimulation of the optic nerve. Diffuse photic and electric stimuli evoke a short-lasting initial activation of a neuron, followed by an inhibitory phase, during which the response to repetitive stimulation is suppressed. By contrast, localized stimulation of the neuron's receptive field with a spot of light produces an intensive and longer-lasting activation which is not followed by profound inhibition. Fusion of the responses to paired and rhythmic localized stimuli is therefore possible when the intervals between stimuli are brief enough. Rhythmic stimulation is capable of evoking sustained activation of a neuron during the entire duration of light flicker. During stimulation of a single point of the receptive field such prolonged activation can take place only within a limited range of stimulation frequencies (up to 15/sec), while higher frequencies evoke responses to the onset and offset of sequences of light flashes only. If, however, rhythmic stimuli alternate between the various points of a receptive field, prolonged neuronal activation is observed with any frequency of stimulation.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 3, No. 3, pp. 252–259, May–June, 1971.  相似文献   

4.
Summary Single unit optic nerve responses were studied in isolated eye-optic lobe preparations ofLoligo opalescens. Units could be classified as fast or slow. Fast units were invariably receptor cell axons; slow units might be either receptor cell axons or centrifugal axons.On, on-off, andoff units could be found within these classes. A given unit was not stable with respect to these latter attributes which depended greatly on the history and level of illumination. The curve which relates quantal content of a brief flash to number of spikes in the response has a logarithmic phase, but it saturates as brightness is increased further. An inhibitory component has been demonstrated following the response to a flash. It is probably responsible for the non-monotonic relationship between frequency and light intensity which is observed for sustained stimuli. Background light or previous illumination can lead to a facilitation of the response to a flash.The authors share equally in credit and responsibility for this paper and for the research reported here. We thank Dr. A. Hurley and Dr. T. H. Bullock for valuable comments and suggestions and L. Ball and S. St. John for technical assistance. This research was supported by PHS grants NS 09342 to GDL and EY 29405 to PHH, by a grant from the Sloan Foundation to the group in Neurosciences at UCSD and NSF grants GB 24816 and GD 28838 to the Scripps Institution of Oceanography for operation of the Alpha Helix Research Program.  相似文献   

5.
Visual cortical unit responses of the squirrelSciurus vulgaris to shaped visual stimuli (stationary and moving spots and bands) were studied. Neurons responding selectively to the direction of stimulus movement and orientation of lines and those not responding selectively to these features were distinguished. Many neurons, whether responding selectively or not to movement direction, were specifically sensitive to high speeds of movement, of the order of hundreds of degrees per second. This selectivity in neurons responding selectively to movement direction persisted at these high speeds, despite the short time taken by the stimulus to move across the receptive field. Neurons responding selectively to line orientation were sensitive to lower speeds of stimulus movement — from units to tens of degrees per second. Neuronal sensitivity to high speeds of stimulus movement is achieved through rapid summation of excitation from large areas of the receptive field crossed by the fast-moving stimulus. Selectivity of the response to movement direction is produced under these conditions with the aid of directed short-latency inhibition, inhibiting unit activity for stimulus movement in "zero" direction.  相似文献   

6.
7.
8.
9.
10.
丹扬 《生命科学》2008,20(5):692-694
活动依赖的神经可塑性在视觉皮层信息处理过程中起着很重要的作用。该文将讲述几个关于视觉刺激引起皮层反应发生快速变化的研究工作。在体膜片钳的实验结果表明,将视觉刺激与能够诱发孽个视皮层神经元发放动作电位的电刺激相偶联可以改变神经元的感受野特性。单电极和多电极胞外记录的实验结果显示,反复地给予自然图形电影刺激,不仅能增加视皮层神经元反应的可靠性,而且能造成之后的自发活动中存在“记忆的痕迹”。最后,用电压敏感染料成像的方法对群体细胞活动进行考察,结果提示视觉活动之后的皮层回放可能是由皮层波介导的。  相似文献   

11.
Extracellular and intracellular responses of 183 neurons in the primary projection area of the somatosensory cortex to electrical and tactile stimulation of the skin on the contralateral fore limb and to stimulation of the ventro-posterolateral thalamic nucleus of the ipsilateral hemisphere were studied in chronic experiments on cats. Spike responses to afferent stimuli are subdivided into three types: initial with a latent period of under 60 msec; initial followed by late responses with a latent period of over 60 msec; late with a latent period of over 60 msec. In addition another group of neurons responding to peripheral stimuli in the interval between the initial and the late response was identified. In nearly all cases the initial responses to peripheral stimulation had the form of a series of spikes, unlike responses to thalamic stimulation. It is concluded from the durations of the latent periods of these responses that about 70% of neurons in the primary projection area are activated mono- and disynaptically in response to peripheral stimulation; consequently, the intracortical spread of excitation in this zone is restricted.  相似文献   

12.
Intracellular responses of motion-sensitive visual interneurons were recorded from the lobula complex of the mantis, Tenodera aridifolia. The interneurons were divided into four classes according to the response polarity, spatial tuning, and directional selectivity. Neurons of the first class had small, medium, or large receptive fields and showed a strong excitation in response to a small-field motion such as a small square moving in any direction (SF neurons). The second class neurons showed non-directionally selective responses: an excitation to a large-field motion of gratings in any direction (ND neurons). Most ND neurons had small or medium-size receptive fields. Neurons of the third class had large receptive fields and exhibited directionally selective responses: an excitation to a large-field motion of gratings in preferred direction and an inhibition to a motion in opposite, null direction (DS neurons). The last class neurons had small receptive fields and showed inhibitory responses to a moving square and gratings (I neurons). The functional roles of these neurons in prey recognition and optomotor response were discussed.  相似文献   

13.
Unit responses of the rabbit visual cortex were investigated in relation to size of visual stimuli moving in their receptive field. With an increase in size of the stimulus in a direction perpendicular to the direction of movement ("width" of the stimulus) an initial increase in the intensity of the unit response through spatial summation of excitory effects is followed by a decrease through lateral inhibition. This inhibition is observed between zones of the receptive field which behave as activating when tested by a stimulus of small size. Each neuron has its own "preferred" size of stimuli evoking its maximal activation. No direct correlation is found between the "preferred" stimulus size and the size of the receptive field. With a change in stimulus size in the direction of movement ("length" of the stimulus) the responses to stimuli of optimal size may be potentiated through mutual facilitation of the effects evoked by the leading and trailing edges of the stimulus and weakened in response to stimuli of large size. The selective behavior of the neurons with respect to stimulus size is intensified in the case of coordinated changes in their length and width. It is postulated that the series of neurons responding to stimuli of different "preferred" dimensions may constitute a system classifying stimuli by their size.A. N. Severtsov Institute of Evolutionary Morphology and Ecology of Animals, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 4, No. 6, pp. 636–644, November–December, 1972.  相似文献   

14.
15.
Summary In the tectum opticum ofSalamandra salamandra neurons were recorded that showed different selectivity to visual prey stimulus parameters. 21 of 80 neurons responded stronger to rectangles oriented horizontally (wormlike configuration) than to the same patterns oriented vertically. With increasing stimulus velocity, however, these neurons showed non-uniform response characteristics. Although there are partial similarities between behavior and neuronal activity, no response curve of tectal neurons corresponds strictly to response curves of salamander preycapture behavior. So none of the neuron types can be called a prey detector.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

16.
Responses of neurons of the medial (MPO) and lateral (LPO) preoptic region (RPO) and adjacent hypothalamic structures to serial stimuli (6–300/sec) of the prefrontal (area 8) and cingulate (area 24) cortex, piriform lobe (periamygdaloid cortex — RPA), and hippocampus (area CA3) were investigated in acute experiments on cats under ketamine anesthesia. Four main types of responses were found: excitatory, inhibitory, excitatory on-off effect, and inhibitory on-off effect. With the use of stimuli with increasing frequencies, the direction of the response remained constant, only its intensity changed. Neurons responding to presentation of serial stimuli were localized mainly in the central part of the MPO and basal part of the LPO, where the most pronounced foci of convergence were observed. During serial stimulation of cortical structures, inhibitory responses occurred considerably more often than excitatory (ratio 3.4:1). The presence of a gradient of inhibition was established from new to old (in a phylogenetic respect) brain formations in a number of stimulated structures. In the case of stimulating the neocortex (proreal gyrus), the predominance of inhibitory responses over excitatory was minimum (1.7:1); it increased (1.9:1) in the case of stimulating the intermediate cortex (cingulate gyrus), still more (4.5:1) under conditions of stimulating the paleocortex (periamygdaloid cortex), and in the case of stimulating the archicortex (10.2:1).A. M. Gorky Medical Institute, Ukrainian Ministry of Health, Donetsk. Translated from Neirofiziologiya, Vol. 23, No. 6, pp. 720–731, November–December, 1991.  相似文献   

17.
 A biophysically realistical model of the primary visual pathway is designed, including feedback connections from the visual cortex to the lateral geniculate nucleus (LGN) – the so-called corticofugal pathway. The model comprises up to 10 000 retina and LGN cells divided into the ON and the OFF pathway according to their contrast response characteristics. An additional 6000 cortical simple cells are modeled. Apart from the direct excitatory afferent pathway we include strong mutual inhibition between the ON and the OFF subsystems. In addition, we propose a novel type of paradoxical corticofugal connection pattern which links ON dominated cortical simple cells to OFF-center LGN cells and vice versa. In accordance with physiological findings these connections are weakly excitatory and do not interfere with the steady-state responses to constant illumination, because during the steady-state inhibition arising from the active pathway effectively silences the nonstimulated pathway. At the moment of a contrast reversal the effect of the paradoxical connection pattern comes into play and the depolarization of the previously silent channel is accelerated, leading to a latency reduction of up to 4 ms using moderate synaptic weights. With increased weights reductions of more than 10 ms can be achieved. We introduce different synaptic characteristics for the feedback (AMPA, NMDA, AMPA+NMDA) and show that the strongest latency reduction is obtained for a combination of the membrane channels (i.e., AMPA+NMDA). The effect of the proposed paradoxical connection pattern is self-regulating; because the levels of inhibition and paradoxical excitation are always driven by the same inputs (strong inhibition is counterbalanced by a stronger paradoxical excitation and vice versa). In addition, the latency reduction for a contrast inversion which ends at a small absolute contrast level (small contrast step) is stronger than the reduction for an inversion with large final contrast (large contrast step). This leads to a more pronounced reduction in the reaction times for weak stimuli. Thus, reaction time differences for different contrast steps are smoothed out. Received: 22 January 1996/Accepted in revised form: 20 May 1996  相似文献   

18.
The visual capabilities of gastropod molluses and most other invertebrates possessing structurally simple eyes are poorly known. We studied vision in untrained marsh periwinkles (Littorina irrorata) in the laboratory, using oriented movements toward test shapes as the response measure. This intertidal species is active when exposed at low tide, both during the day and at night, and it travels vertically on plant stems with a tidal rhythm. In detection tests, the estimated response threshold for a single vertical bar was 0.9°, while the response threshold for an equal-size horizontal bar was 2.4° or 3.7°, depending on bar position. Snails detected a 5°-wide bar in 4.3 1x of light and a 40°-wide square having about 95% reflectance (‘off-white’) on a white (100% nominal reflectance) background in 2800 1x. Discrimination tests revealed a strong preference for vertical bars over both diagonal and horizontal bars of the same width, but no preferences in several other situations. Various factors suggest that L. irrorata may see better than most other gastropods.  相似文献   

19.
20.
The thermoencephaloscopic study of patients with reactive depression during exposure to emotionally significant visual stimuli detected a functional change in the state of the frontal associative area of the right hemisphere and the parietal associative area of the left hemisphere and the activation of the left temporal area, closely related to the limbic system. The data obtained may be used for the elaboration of new methods of diagnosis and therapy of reactive depressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号