首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi comprise a major part of the diet of many animals. Even so, the nutritional value of fungi has been much debated, with some arguing that fungi are nutritionally poor. However, the chemical composition of fungi and of the biology of the animals that eat them are not well understood, particularly in reference to amino acid (AA) composition of fungi and digestibility of fungal protein. We analysed fibre, total nitrogen (N), available N, and AA contents and measured in vitro digestibility of a wide range of epigeous and hypogeous fungi collected in Australia and the USA to test three hypotheses: (i) fungi are nutritionally poor because they contain few nutrients or are otherwise of low digestibility, (ii) fungi vary substantially in their nutritional composition; and (iii) animals can counter this variable quality by eating diverse taxa. Resultant data indicate many fungi are a reasonable source of AAs and digestible nitrogen. However, they vary highly between species in AA content, and the protein has a poor balance of digestible AAs. This helps explain why many mycophagous animals eat a wide array of fungi and often have digestive strategies to cope with fungi, such as foregut fermentation. Another common strategy is to supplement the diet with high quality protein, such as insect protein. Accordingly, evaluating nutritional value of fungi requires consideration of physiology of the animal species and their whole diet.  相似文献   

2.
A comparative floristic survey of lowland tropical rain forest at Kuala Lompat, Krau Game Reserve, West Malaysia and at Sepilok Virgin Jungle Reserve, Sabah, East Malaysia, revealed significant differences in the composition of canopy species, notably in the relative paucity of Dipterocarpaceae and abundance of Leguminosae at Kuala Lompat. A further comparison with data from other sites in Malesia indicated that Kuala Lompat was rather atypical, representing an extreme example of the relatively legume rich and dipterocarp poor forests of West Malaysia. Conversely, the predominance of dipterocarps and lack of legumes at Sepilok was similar to other sites in Borneo. Young and mature leaves were collected from a representative sample of the canopy flora of the two study sites; the levels of nitrogen, fibre, total phenolics and condensed tannins, and degree of digestibility by cellulase and pepsin, were measured. Levels of fibre, nitrogen and phenolics differed significantly between the two floras; foliage from Kuala Lompat being, on the whole, richer in nitrogen but lower in phenolics and fibre. As a consequence of the lower levels of fibre, and less certainly of phenolics, the Kuala Lompat foliage was comparatively more digestible. Possible reasons for the differences in foliar biochemistry between the two sites are discussed. Differences in rainfall and in soil quality are regarded as potential evolutionary causes. A further comparison of the chemical profiles with data for other forests in India and Africa indicate that Sepilok is a site in which trees invest heavily in quantitative defences such as fibre and phenolics whereas trees at Kuala Lompat place a lower emphasis on the production of these. Finally, attention is drawn to the use of foliar chemical profiles in predicting the carrying capacity for colobine monkeys at each of the five Old World forests where data are available. It was found that the ratio of nitrogen to fibre correlated well with the biomass of colobines at the five sites.  相似文献   

3.
K. M. Kool 《Oecologia》1992,90(4):527-533
Summary Samples of leaves and fruits exploited as food items byTrachypithecus auratus sondaicus were analysed for nitrogen content, acid detergent fibre (ADF), pepsin cellulase digestibility (CDIG), condensed tannins (CT), total phenolics (TP) and protein precipitation capacity (PP) and compared with fruits and leaves not eaten. Differences in chemical measures for items eaten and not eaten were not statistically significant but trends indicate that leaves may have been selected for their lower fibre content and greater digestibility. Fruits eaten also had a higher mean level of CDIG and lower mean level of ADF than fruits not eaten but these measures are not considered to be of major importance in fruit selection as CDIG was lower and ADF higher in fruits eaten than in leaves eaten. Levels of CT, TP and PP capacity were higher in fruits eaten than in fruits not eaten but lower in leaves eaten than in leaves not eaten. The role of tannins and phenolics in food selection is discussed. Leaves (and fruits) were not strongly selected on the basis of protein content. Approximately half the dietary intake ofT. auratus sondaicus was leaves, a protein-rich food source. Possibly, protein levels in foliage at Pangandaran were sufficient that selection for this nutrient was not required. A nutrient other than protein (for example, soluble carbohydrates) may have been maximised through food selection. The protein/ADF ratio may provide an indicator of the acceptability of foliage in a habitat as potential food for a colobine. However, this ratio did not govern food selection byT. auratus sondaicus at Pangandaran.  相似文献   

4.
Many regard the concentrations of nitrogen (N), tannins and plant cell wall constituents (fibre) as key indicators of food quality and habitat suitability for browsing herbivores; yet there is no method for measuring their combined effects. We have developed a simple in vitro assay for measuring the effects of tannins and fibre on N availability in browse. We determined the effects of tannins by measuring the polyethylene glycol (PEG)-binding capacity (PEG-BC) of Eucalyptus leaf samples, followed by a two-stage in vitro digestion with pepsin and cellulase to determine the digestibility of dry matter and N. There was a significant relationship between concentrations of digestible N and the PEG-BC of the leaves. Furthermore, adding PEG significantly improved the digestibility of N. Our results concur with in vivo observations from several mammalian species. This suggests that our method is effective for measuring the nutritional quality of browse and the benefits of adding PEG, providing some index of the detrimental effects of tannins. We further simplified the assay by removing the PEG step, allowing us to quickly analyse samples in bulk. Nevertheless, this simplified method is still not practical for analysing the many samples necessary to compare the nutritional values of different tracts of forest. We used near-infrared reflectance spectroscopy to produce calibration equations and predicted total and digestible N in 322 trees at eleven sites. Both within and between sites, we found a wide variation in concentrations of digestible N but a much lower variation in total N, with either no relationship or poor relationships between the two measures. This confirms the variability in the nutritional quality of eucalypt forests, which may explain the distribution and abundance of mammalian herbivores. Thus, our assay provides a useful tool for understanding how food resources influence herbivore populations at different scales. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
It has been suggested that plant physical and chemical traits vary considerably in space and time. Hence, leaf‐mining insects may adjust their oviposition in response to leaf attributes representing high quality. Moreover, herbivorous insects can modify leaf morphology by acting as stressors, increasing, for example, fluctuating asymmetry (FA) levels. Here, we investigate oviposition preference in Agnippe sp.2, a leaf‐mining moth of Erythroxylum tortuosum, in relation to differences in leaf nutritional quality (i.e. levels of water, nitrogen and tannin content), leaf area (i.e. quantity of resource hypothesis) and FA. We also verify whether temporal variation in plant nutritional quality emerges as an alternative hypothesis to explain oviposition distribution in time, and whether this leaf miner is a stress‐causing agent, increasing FA during larval development. Mined leaves and leaves with and without eggs were periodically collected from plants located in a Cerrado fragment in Brazil. In the laboratory, leaf traits were assessed (using image analysis software) and quantified (biochemical analysis) according to the aims previously determined. Oviposition probability did not change in relation to variations in nitrogen, tannins and FA of leaves. However, leaf‐miner females preferred to oviposit on leaves having large areas and low water contents. It was also verified that new leaves of E. tortuosum, which carried most leaf‐miner eggs, presented significantly lower tannins and greater levels of nitrogen and water than old leaves. The oviposition choice exhibited by leaf miners was found to be non‐random because they appear to use resource quantity and water content as cues as where to lay their eggs. The temporal variation of plant nutritional quality is likely to influence the time of leaf‐miner oviposition; and leaf FA was not increased during larval feeding, suggesting that these herbivores do not cause variations in FA levels.  相似文献   

6.
1. Changes in nutritional value and accessibility of leaves following browsing are important in the dynamics of plant–herbivore interactions because they influence the fitness of the plant attacked and the future utilization of it by the herbivore.
2. Hand pruning of Acacia tortilis , a spinescent tree common in savanna ecosystems of eastern Africa, resulted in higher biomass of spines and new shoots in pruned trees than in unpruned controls.
3. Pruned trees allocated a higher proportion of shoot biomass to spines than unpruned ones, whereas the proportion of leaf biomass in new shoots was slightly reduced. Because increases in spine biomass and density following pruning are coupled with an increase in shoot production, it is concluded that higher production of spines is an inducible response of Acacia tortilis to pruning.
4. No significant changes in the concentration of total phenolics, condensed tannins or leaf nitrogen were induced by pruning.
5. Irrespective of treatment, high foliar concentrations of nitrogen were correlated with an increase in twig production for a given leaf biomass and a reduction in the concentration of secondary substances in leaves. This relation may lead to a conflict between foraging efficiency and nutrition for browsers of A. tortilis.  相似文献   

7.
Summary Many species of Eucalyptus, one of the dominant genera in Australian forests and woodlands, contain high levels of tannins and other phenols and are also heavily damaged by grazing insects. These phenols do not appear to affect insect attack because a wide range of concentrations of condensed tannins and other phenols in leaves of 13 Eucalyptus sp. influenced neither feeding rates of Paropsis atomaria larvae, nor their nitrogen use efficiencies. We discuss reasons why tannins may not appreciably reduce the availability of nitrogen (N) to these insects. Performance was directly related to leaf N concentration, and growth rates, N gains, and N use efficiencies all increased as leaf N content increased, although absolute feeding rates remained constant. These relationships differ from those found in insects feeding on other plants, and we suggest that the low N contents common in Eucalyptus leaves may be responsble. We propose that the extensive damage observed in many eucalypts is in part related to the high feeding rates maintained by individual larvae.To whom offprint requests shouid be sent  相似文献   

8.
调整叶性状和生物量分配格局是植物适应环境变化的主要途径, 研究车桑子(Dodonaea viscosa)幼苗生物量分配与叶性状对氮磷浓度的响应对认识车桑子在氮磷浓度变化下的适应策略具有重要意义。该研究通过砂培法, 测定不同氮浓度(3、5、15、30 mmol·L-1)与不同磷浓度(0.25、0.5、1、2 mmol·L-1)下车桑子幼苗的生长、生物量分配、叶性状的响应特征及其相互关系。结果表明: 高浓度氮(30 mmol·L-1)促进了车桑子幼苗生长、叶片氮含量和生物量积累, 其余氮添加条件(3、5、15 mmol·L-1)下车桑子幼苗各性状无显著差异, 但相比高氮水平, 其生物量积累和叶片氮含量显著降低, 根冠比和氮利用效率显著增加。随着磷添加浓度的增加, 车桑子幼苗生物量显著增加, 低磷条件(0.25、0.5 mmol·L-1)限制了车桑子幼苗生长和生物量积累, 其根冠比和磷利用效率均没有发生显著变化, 但比叶面积和叶/茎生物量比例显著增加, 叶干物质含量显著降低。氮处理下, 叶片氮含量与根冠比显著负相关; 磷处理下, 叶片氮含量与比叶面积显著正相关。同时, 氮处理下, 车桑子幼苗株高、基径、总生物量等生长性状均与根冠比显著负相关, 与叶片氮含量显著正相关, 表明根冠比和叶片氮含量的调整在车桑子适应氮限制中发挥重要作用; 而磷处理下, 株高、基径、总生物量与比叶面积显著负相关, 与叶干物质含量显著正相关, 表明叶片结构性状的调整在车桑子适应低磷环境中具有重要意义。该研究表明, 车桑子幼苗生物量分配和叶性状及性状间的权衡策略对氮、磷的响应具有明显差异性, 在今后的研究中, 应关注氮和磷对植物性状影响的差异性。  相似文献   

9.
Plants have traits against herbivory that may occur together and increase defense efficiency. We tested whether there are defense syndromes in a cerrado community and, if so, whether there is a phylogenetic signal in them. We measured nine defense traits from a woodland cerrado community in southeastern Brazil. We tested the correlation between all pairs of traits and grouped the species into defense syndromes according to their traits. Most pairwise correlations of traits were complementary. Plants with lower specific leaf area also presented tougher leaves, with low nitrogen, more trichomes, and tannins. We found five syndromes: two with low defenses and high nutritional quality, two with high defenses and low nutritional quality, and one with traits compensating each other. There were two predominant strategies against herbivory in cerrado: “tolerance” and “low nutritional quality” syndromes. Phylogeny did not determine the suite of traits species presented. We argue that herbivory exerts significant selection pressure on these plant defense traits.  相似文献   

10.
《植物生态学报》2021,44(12):1247
调整叶性状和生物量分配格局是植物适应环境变化的主要途径, 研究车桑子(Dodonaea viscosa)幼苗生物量分配与叶性状对氮磷浓度的响应对认识车桑子在氮磷浓度变化下的适应策略具有重要意义。该研究通过砂培法, 测定不同氮浓度(3、5、15、30 mmol·L-1)与不同磷浓度(0.25、0.5、1、2 mmol·L-1)下车桑子幼苗的生长、生物量分配、叶性状的响应特征及其相互关系。结果表明: 高浓度氮(30 mmol·L-1)促进了车桑子幼苗生长、叶片氮含量和生物量积累, 其余氮添加条件(3、5、15 mmol·L-1)下车桑子幼苗各性状无显著差异, 但相比高氮水平, 其生物量积累和叶片氮含量显著降低, 根冠比和氮利用效率显著增加。随着磷添加浓度的增加, 车桑子幼苗生物量显著增加, 低磷条件(0.25、0.5 mmol·L-1)限制了车桑子幼苗生长和生物量积累, 其根冠比和磷利用效率均没有发生显著变化, 但比叶面积和叶/茎生物量比例显著增加, 叶干物质含量显著降低。氮处理下, 叶片氮含量与根冠比显著负相关; 磷处理下, 叶片氮含量与比叶面积显著正相关。同时, 氮处理下, 车桑子幼苗株高、基径、总生物量等生长性状均与根冠比显著负相关, 与叶片氮含量显著正相关, 表明根冠比和叶片氮含量的调整在车桑子适应氮限制中发挥重要作用; 而磷处理下, 株高、基径、总生物量与比叶面积显著负相关, 与叶干物质含量显著正相关, 表明叶片结构性状的调整在车桑子适应低磷环境中具有重要意义。该研究表明, 车桑子幼苗生物量分配和叶性状及性状间的权衡策略对氮、磷的响应具有明显差异性, 在今后的研究中, 应关注氮和磷对植物性状影响的差异性。  相似文献   

11.
Nutritional factors are among the most important influences on primate food choice. We examined the influence of macronutrients, minerals, and secondary compounds on leaf choices by members of a foli-frugivorous population of eastern black-and-white colobus—or guerezas (Colobus guereza)—inhabiting the Kakamega Forest, Kenya. Macronutrients exerted a complex influence on guereza leaf choice at Kakamega. At a broad level, protein content was the primary factor determining whether or not guerezas consumed specific leaf items, with eaten leaves at or above a protein threshold of ca. 14% dry matter. However, a finer grade analysis considering the selection ratios of only items eaten revealed that fiber played a much greater role than protein in influencing the rates at which different items were eaten relative to their abundance in the forest. Most minerals did not appear to influence leaf choice, though guerezas did exhibit strong selectivity for leaves rich in zinc. Guerezas avoided most leaves high in secondary compounds, though their top food item (Prunus africana mature leaves) contained some of the highest condensed tannin concentrations of any leaves in their diet. Kakamega guerezas periodically traveled great distances to exploit rare foods (bark from exotic Myrtaceae trees and soil) outside their normal home ranges. Our results suggest that these journeys were driven by the fact that these rare foods contained exceptionally high sodium concentrations, a mineral believed to be deficient in the guereza's usual diet. Lastly, our results are consistent with the pattern established across other Paleotropical rain forests in which colobine biomass can be predicted by the protein-to-fiber ratio in mature leaves. Of the 8 rain forests for which the relevant data are available, Kakamega features the second highest mature leaf protein-to-fiber ratio as well as the second highest colobine biomass.  相似文献   

12.
The diet selection of two groups of red colobus monkeys (Procolobus badius) in Kibale National Park, Uganda are considered with respect to protein, fiber, digestibility, alkaloids, total phenolics, tannins, saponins, and cyanogenic glycosides. Both groups selected young leaves over mature leaves and young leaves had more protein, were more digestible, and had a higher protein to fiber ratio than mature leaves. Young and mature leaves did not differ with respect to secondary compounds. There were no differences in the phytochemical factors examined between frequently eaten foods and leaves that red colobus were never known to eat, but were relatively common in the environment. Regression analyses predicting foraging effort from the phytochemical components of the large group's diet revealed selection for only one factor, foods that are high in protein and low in fiber, when differences in food tree availability were taken into consideration. A similar analysis with the small group did not suggest selection or avoidance of foods with respect to any of the factors considered. Previous studies have found the biomass of folivorous primates to be related to the ratio of protein to fiber concentration of mature leaves in the environment. These investigations have considered variation in folivore biomass and forest composition among sites separated by hundreds of kilometers; however, large variation in folivore abundance occurs over much smaller spatial scales. In Kibale National Park the average protein to fiber ratio of the mature leaves of the 20 most abundant tree species predicted the biomass of red colobus among four neighboring sites. We examined the generality of this relationship by adding our biomass and leaf chemistry values to previously published values; 62% of the variance in colobine biomass was explained by variation in the protein to fiber ratios of mature leaves at the sites. There was no evidence that red colobus avoided plants with high levels of secondary compounds. In fact, one of the most preferred trees (Prunus africana) was the species with the highest levels of cyanogenic glycosides, and the highest saponin levels were found in the young leaves of Albizia grandibracteata, the sixth and fourth most preferred plant species for the large and small groups, respectively.  相似文献   

13.
BACKGROUND AND AIMS: Both nutrient availability and defoliation affect the carbon-nutrient balance in plants, which in turn influences biomass allocation (e.g. shoot-to-root ratio) and leaf chemical composition (concentration of nitrogen and secondary compounds). In this study it is questioned whether defoliation alters biomass allocation and chemical defence in a similar fashion to the response to nutrient deficiency. METHODS: Current-year seedlings of Quercus serrata were grown with or without removal of all leaves at three levels of nutrient availability. KEY RESULTS: Plant nitrogen concentration (PNC), a measure of the carbon-nutrient balance in the plant, significantly decreased immediately after defoliation because leaves had higher nitrogen concentrations than stems and roots. However, PNC recovered to levels similar to or higher than that of control plants in 3 or 6 weeks after the defoliation. Nitrogen concentration of leaves produced after defoliation was significantly higher than leaf nitrogen concentration of control leaves. Leaf mass per plant mass (leaf mass ratio, LMR) was positively correlated with PNC but the relationship was significantly different between defoliated and control plants. When compared at the same PNC, defoliated plants had a lower LMR. However, the ratio of the leaf to root tissues that were newly produced after defoliation as a function of PNC did not differ between defoliated and control plants. Defoliated plants had a significantly lower concentration of total phenolics and condensed tannins. Across defoliated and control plants, the leaf tannin concentration was negatively correlated with the leaf nitrogen concentration, suggesting that the amount of carbon-based defensive compounds was controlled by the carbon-nutrient balance at the leaf level. CONCLUSIONS: Defoliation alters biomass allocation and chemical defence through the carbon-nutrient balance at the plant and at the leaf level, respectively.  相似文献   

14.
The biomass of arboreal folivorous primates in Africa and Asia is related to an index of mature leaf quality: the ratio of protein-to-fiber concentration. Investigations have considered variation in folivore biomass and forest composition among sites separated by hundreds or thousands of km. However, large variation in folivore abundance has been documented over much smaller spatial scales. We quantify the degree to which the average protein-to-fiber ratio of mature leaves of the 20 most abundant tree species predicts the biomass of western red colobus (Piliocolobus trephosceles) and black-and-white colobus (Colobus guereza) over very small spatial scales. Four sites within Kibale National Park, Uganda, varied markedly in forest structure. Colobine biomass varied among sites from 191 to 2675 kg/km2 and was related to the average protein-to-fiber ratio of mature leaves of the 20 most abundant tree species at each site. We examined the generality of the relationship between protein-to-fiber ratios and colobine abundance by adding our biomass and leaf chemistry values to previously published values to produce 9 comparable sites. At these locations, colobine biomass varied from 84 to 2675 kg/km2 (mean biomass among sites = 910 kg/km2), and mean protein/fiber ratios varied from 0.167 to 0.577. Colobine biomass was related to the protein-to-fiber ratios of mature leaves (R 2 = 0.616, P = 0.012).  相似文献   

15.
Vascular plant leaf traits that influence photosynthetic function form the basis of mechanistic models of carbon exchange. Given their unique tissue organization, bryophytes may not express similar patterns. We investigated relationships among tissue, shoot, and canopy traits, and their associations with photosynthetic characteristics in 10 Sphagnum species. Trait relationships were organized around a primary dimension accounting for 43% of variation in 12 traits. There was no significant relationship between nitrogen content of shoot systems and maximum photosynthesis expressed on mass (A(mass)) or area (A(area)) bases due to nitrogen sequestration and storage within the canopy interior. This pattern differs from the distribution of nitrogen in vascular plant canopies. Thus, nitrogen and its relationship to carbon uptake in Sphagnum shoots does not conform to patterns of either vascular plant leaves or canopies. Species that concentrate biomass and nitrogen in the capitulum have enhanced rates of A(mass) and A(area). Consequently, A(area) was positively associated with N(area) of the capitulum only. Overall, water content and carotenoid concentration were the strongest predictors of both A(mass) and A(area) and these were expressed as inverse relationships. The relationships of plant traits in Sphagnum defines a principal trade-off between species that tolerate environmental stress and those that maximize carbon assimilation.  相似文献   

16.
Abstract 1. Leaf mining insects feed within plant tissue and thus have close physical associations with their host plants. Little is known about the evolution of relationships between leaf miners and their host species. 2. The prevalence of leaf mining was examined in relation to the phylogeny of a dominant family of Australian plants, the Myrtaceae. Sixty‐eight species from the 10 major phylogenetic groups within the family were sampled in south‐eastern Australia. 3. Fifty‐seven per cent of the plant species examined were found to be mined. Several leaf traits were compared between mined and unmined plant species to investigate the potential role of both physical and nutritional characteristics in determining host‐plant susceptibility to these herbivores. 4. The physical leaf traits measured were leaf area, specific leaf area (SLA), lamina thickness, toughness, and amount of fibre (percentage hemicellulose). The nutritional traits were water content, and concentrations of carbon, nitrogen, total phenols and condensed tannins. Principal component analysis showed mined plant species differed from unmined in terms of several leaf traits. 5. In a post hoc regression weighted for phylogeny, leaf miner presence was significantly positively correlated with plant species having thinner laminas and higher phenol concentrations, and was positively correlated with marginal significance to SLA and water content.  相似文献   

17.
Despite increasing evidence on the importance of species functional characteristics for ecosystem processes, two major hypotheses suggest different mechanisms: the ‘mass ratio hypothesis’ assumes that functional traits of the dominant species determine ecosystem processes, while the ‘complementarity hypothesis’ predicts that resource niches may be used more completely when a community is functionally more diverse. Here, we present a method which uses two different groups of biotic predictor variables being (1) abundance‐weighted mean (=aggregated) trait values and (2) functional trait diversity based on Rao's quadratic diversity (FDQ) to test the competing hypotheses on biodiversity–ecosystem functioning relationships after accounting for co‐varying abiotic factors. We applied this method to data recorded on biodiversity–biomass relationships and environmental variables in 35 semi‐natural temperate grasslands and used a literature‐based matrix of fourteen plant functional traits to assess the explanatory power of models including different sets of predictor variables. Aboveground community biomass did not correlate with species richness. Abiotic factors, in particular soil nitrogen concentration, explained about 50% of variability in aboveground biomass. The best model incorporating functional trait diversity explained only about 30%, while the best model based on aggregated trait values explained about 54% of variability in aboveground biomass. The inclusion of all predictor variable groups in a combined model increased the predictive power to about 75%. This model comprised soil nitrogen concentration as abiotic factor, aggregated traits being indicative for species competitive dominance (rooting depth, leaf distribution, specific leaf area, perennial life cycle) and functional trait diversity in vegetative plant height, leaf area and life cycle. Our study strongly suggests that abiotic factors, trait values of the dominant species and functional trait diversity in combination may best explain differences in aboveground community biomass in natural ecosystems and that their isolated consideration may be misleading.  相似文献   

18.
Leaf strategies and soil N across a regional humidity gradient in Patagonia   总被引:1,自引:0,他引:1  
We analyzed leaf traits related to carbon-fixation, nutrient conservation strategies, and decomposability and their relationships with potential N-mineralization and microbial N in soil in 19 species of 5 dominant life forms growing in 40 sites across a regional humidity gradient in northern Patagonia. We hypothesized that (1) the shifting of species and life forms across the humidity gradient is related to a shifting in traits of green and senesced leaves with some overlapping among life forms, and (2) leaf traits associated with litter decomposition are related to the potential dynamics of soil-N across the humidity gradient. LMA in green leaves and P-resorption efficiency decreased with humidity while concentrations of lignin and total phenolics in green and senesced leaves and P concentration in senesced leaves increased with humidity. Soil C and N concentrations were positively correlated to humidity. Increasing soil N concentration was related to increasing rates of absolute (per unit soil mass) potential net N-mineralization and microbial-N flush. Relative (per unit N mass) potential net N-mineralization and microbial-N flush decreased with soil N and were inversely correlated to lignin concentration and C/N ratio in senesced leaves. We found overlapping in N concentration and C/N ratio in green and senesced leaves, P concentration in green leaves, and N resorption among species and life forms across the humidity gradient. We concluded that (1) leaf traits related to carbon fixation and the decomposition pathway significantly varied with humidity and were not overlapped between plant life forms from dry and humid habitats, (2) the largest overlapping among species and plant life forms across the gradient occurred in those leaf traits related to N conservation in the plant, and (3) life forms from humid habitats produce more recalcitrant litter that induce lower rates of relative potential net N mineralization (per unit N) than those of dry habitats.  相似文献   

19.
The mass ratio (MRH) and niche complementarity (NCH) hypotheses can explain how leaf trait composition drives decomposition, an ecosystem process linked to nutrient cycling and carbon sequestration. However, few studies have used an experiment designed to disentangle the role of the mechanisms proposed by these hypotheses. This is especially true regarding the role of leaf functional traits for decomposition rates in tropical ecosystems. Here, we quantified the biomass loss of 120 leaf mixtures assembled according to four quasi-orthogonal combinations of different mean trait values (community-weighted mean; CWM) and trait variability (functional diversity; FD) of three leaf functional traits (leaf nitrogen and leaf magnesium concentrations and specific leaf area). We found that CWM values of leaf nutritional traits were positively related to greater biomass loss. This supports the hypothesis that the mean trait values of leaf mixtures can drive biomass loss (MRH). However, contrary to NCH expectations, in some circumstances, increasing trait variability of leaf nutritional traits decreased biomass loss. Our results reinforce some previous evidence that, together, CWM and FD can explain leaf decomposition and highlight that the mean resource quality of leaf mixtures is a driver of biomass loss. Also, as previously reported for temperate ecosystems, trait variability does not always increase leaf decomposition in tropical ecosystems. Therefore, there is a need to consider simultaneously both MRH and NCH in future studies, using an appropriate design, keeping in mind that both mechanisms will always be present in any species mixture or combination.  相似文献   

20.
Invasive plant species are often found to have advantages over native species in growth-related traits, such as photosynthetic rate, in disturbed or resource-rich environments. However, resource-use efficiency, rather than opportunistic resource capture, may confer more advantages when resources are scarce. In this study, performance and functional traits of invasive and non-invasive members of the genus Pinus were contrasted under the condition of nutrient limitations. Invasive species outperformed non-invasive congeners by growing 28% faster, on average. Invasives and non-invasives did not differ in biomass allocation traits (root-weight ratio, stem-weight ratio, leaf-weight ratio, leaf area ratio, root: shoot coefficient), but invaders had thinner and/or less dense leaves, as shown by a significantly lower leaf mass per area and leaf dry mass fraction. No differences between invasives and non-invasives were apparent in area-based leaf content of nitrogen, chlorophyll, or total protein, nor did the two groups differ in how efficiently they took up nutrients (specific absorption rate per unit root mass). The trait most strongly associated with invasives’ superior performance was photosynthetic nitrogen-use efficiency. Non-invaders were more water-use efficient. The results suggests that the relative performance of invasive and non-invasive species is context-dependent. Invaders may allocate leaf nitrogen more efficiently to maximize photosynthesis and growth in nitrogen-poor soils, while non-invaders with more heavily defended leaves may have an advantage in drier areas. Rather than searching for a suite of traits that constitutes “invasiveness”, it may be necessary to identify potential invaders by traits that are most adaptive to the local resource context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号