首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcohol dependence (AD) is a multifactorial and polygenic disorder involving complex gene-to-gene and gene-to-environment interactions. Several genome-wide association studies have reported numerous risk factors for AD, but replication results following these studies have been controversial. To identify new candidate genes, the present study used GWAS and replication studies in a Korean cohort with AD. Genome-wide association analysis revealed that two chromosome regions on Chr. 4q22-q23 (ADH gene cluster, including ADH5, ADH4, ADH6, ADH1A, ADH1B, and ADH7) and Chr. 12q24 (ALDH2) showed multiple association signals for the risk of AD. To investigate detailed genetic effects of these ADH genes on AD, a follow-up study of the ADH gene cluster on 4q22-q23 was performed. A total of 90 SNPs, including ADH1B rs1229984 (H47R), were genotyped in an additional 975 Korean subjects. In case–control analysis, ADH1B rs1229984 (H47R) showed the most significant association with the risk of AD (p = 2.63 × 10?21, OR = 2.35). Moreover, subsequent conditional analyses revealed that all positive associations of other ADH genes in the cluster disappeared, which suggested that ADH1B rs1229984 (H47R) might be the sole functional genetic marker across the ADH gene cluster. Our findings could provide additional information on the ADH gene cluster regarding the risk of AD, as well as a new and important insight into the genetic factors associated with AD.  相似文献   

2.
Although the AdhN/AdhN strain ofPeromyscus maniculatus (so-called ADH? deermouse) has been previously considered to be deficient in ADH, we found ADH isozymes of Classes II and III but not Class I in the liver of this strain. On the other hand, the AdhF/AdhF strain (so-called ADH+ deermouse), which has liver ADH activity, had Class I and III but not Class II ADH in the liver. In the stomach, Class III and IV ADHs were detected in both deermouse strains, as well as in the ddY mouse, which has the normal mammalian ADH system with four classes of ADH. These ADH isozymes were identified as electrophoretic phenotypes on the basis of their substrate specificity, pyrazole sensitivity, and immunoreactivity. Liver ADH activity of the ADH? strain was barely detectable in a conventional ADH assay using 15 mM ethanol as substrate; however, it increased markedly with high concentrations of ethanol (up to 3M) or hexenol (7 mM). Furthermore, in a hydrophobic reaction medium containing 1.0M t-butanol, liver ADH activity of this strain at low concentrations of ethanol (<100 mM) greatly increased (about sevenfold), to more than 50% that of ADH+ deermouse. These results were attributable to the presence of Class III ADH and the absence of Class I ADH in the liver of ADH? deermouse. It was also found that even the ADH+ strain has low liver ADH activity (<40% that of the ddY mouse) with 15 mM ethanol as substrate, probably due to low activity in Class I ADH. Consequently, liver ADH activity of this strain was lower than its stomach ADH activity, in contrast with the ddY mouse, whose ADH activity was much higher in the liver than in the stomach, as well as other mammals. Thus, the ADH systems in both ADH? and ADH+ deermouse were different not only from each other but also from that in the ddY mouse; the ADH? strain was deficient in only Class I ADH, and the ADH+ strain was deficient in Class II ADH and down-regulated in Class I ADH activity. Therefore, Class III ADH, which was found in both strains and activated allosterically, may participate in alcohol metabolism in deermouse, especially in the ADH? strain.  相似文献   

3.
Alcohol dehydrogenases (ADH) from the F1 progeny of all pairwise crosses between 12 null-activity mutants and crosses between these mutants and four active variants, ADHn5 ADHF, ADHD and ADHS, were analyzed for the presence of active or inactive heterodimers. Gels were stained for ADH enzyme activity, and protein blots of duplicate gels were probed with ADH-specific antibody to detect cross-reacting material. Crosses between the three major electrophoretic variants. ADHF, ADHS and ADHD, all produced active heterodimers. Four mutant proteins (ADHn2, ADHn4, ADHn10 and ADHn13) did not form heterodimers with any other ADH subunit tested. Of the 28 crosses involving the remaining null activity mutants, 22 produce heterodimers. Twelve of these exhibit partial restoration of enzyme activity. In five cases of active heterodimers from null-activity crosses, Adhn11 supplied one of the subunits. In two crosses involving the active variant ADHD, the null activity mutant subunits (ADHn8 and ADHn3) destabilized the heterodimer sufficiently to cause inactivation of the ADHD subunit. In the cross between AdhF and Adhn3, the activity of the ADHF subunit was also greatly reduced in association with the ADHn3 subunit. Two crosses (Adhn1 x Adhn11 and Adhn5 x Adhn12) result in partial restoration of one of the homodimeric proteins (ADH n1 and ADHn12, respectively), as well as forming active heterodimers.  相似文献   

4.
Tuberculosis (TB) has substantial mortality worldwide with 5–10% of those exposed progressing to active TB disease. Studies in mice and humans indicate that the inducible nitric oxide synthase (iNOS) molecule plays an important role in immune response to TB. A mixed case–control association study of individuals with TB, relatives, or close contact controls was performed in 726 individuals (279 case and 166 control African-Americans; 198 case and 123 control Caucasians). Thirty-nine single nucleotide polymorphisms (SNPs) were selected from the NOS2A gene for single SNP, haplotype, and multilocus interaction analyses with other typed candidate genes using generalized estimating equations. In African-Americans, ten NOS2A SNPs were associated with TB. The strongest associations were observed at rs2274894 (odds ratio (OR) = 1.84, 95% confidence interval (CI) [1.23–2.77], p = 0.003) and rs7215373 (OR = 1.67, 95% CI [1.17–2.37], p = 0.004), both of which passed a false discovery rate correction for multiple comparisons (q* = 0.20). The strongest gene–gene interactions were observed between NOS2A rs2248814 and IFNGR1 rs1327474 (p = 0.0004) and NOS2A rs944722 and IFNGR1 rs1327474 (p = 0.0006). Three other SNPs in NOS2A interacted with TLR4 rs5030729 and five other NOS2A SNPs interacted with IFNGR1 rs1327474. No significant associations were observed in Caucasians. These results suggest that NOS2A variants may contribute to TB susceptibility, particularly in individuals of African descent, and may act synergistically with SNPs in TLR4 and IFNGR1.  相似文献   

5.
Interaction of DNA methylation and sequence variants that are methylation quantitative trait loci (mQTLs) may influence susceptibility to diseases such as alcohol dependence (AD). We used genome-wide genotype data from 268 African Americans (AAs: 129 AD cases and 139 controls) and 143 European Americans (EAs: 129 AD cases and 14 controls) to identify mQTLs that were associated with promoter CpGs in 82 AD risk genes. 282 significant mQTL–CpG pairs (9.9 × 10?100 ≤ P nominal ≤ 7.7 × 10?8) in AAs and 313 significant mQTL–CpG pairs (2.7 × 10?53 ≤ P nominal ≤ 9.9 × 10?8) in EAs were identified [i.e., mQTL–CpG associations survived multiple-testing correction, q values (false discovery rate) ≤ 0.05]. The most significant mQTL was rs1800759, which was strongly associated with CpG cg12011299 in both AAs (P nominal = 9.9 × 10?100; q = 6.7 × 10?91) and EAs (P nominal = 2.7 × 10?53; q = 1.4 × 10?44). Rs1800759 (previously known to be associated to AD) and CpG cg12011299 (distance: 37 bp) are both located in alcohol dehydrogenase (ADH) 4 gene (ADH4) promoter region. In general, the strength of association between mQTLs and CpGs was inversely correlated with the distance between them. Association was also influenced by race and AD. Additionally, 48.3 % of the mQTLs identified in AAs and 65.6 % of the mQTLs identified in EAs were predicted to be expression QTLs. Three mQTLs (rs2173201, rs4147542, and rs4147541 in ADH1B-AHD1C gene cluster region) found in AAs were previously identified by our genome-wide association studies as being significantly associated with AD in AAs. Thus, DNA methylation, which can be influenced by sequence variants and is implicated in gene expression regulation, appears to at least partially underlie the association of genetic variation with AD.  相似文献   

6.
Chronic kidney disease (CKD) is an important public health problem in American Indian populations. Recent research has identified associations of polymorphisms in the myosin heavy chain type II isoform A (MYH9) gene with hypertensive CKD in African-Americans. Whether these associations are also present among American Indian individuals is unknown. To evaluate the role of genetic polymorphisms in the MYH9 gene on kidney disease in American Indians, we genotyped 25 SNPs in the MYH9 gene region in 1,119 comparatively unrelated individuals. Four SNPs failed, and one SNP was monomorphic. We inferred haplotypes using seven SNPs within the region of the previously described E haplotype using Phase v2.1. We studied the association between 20 MYH9 SNPs with kidney function (estimated glomerular filtration rate, eGFR) and CKD (eGFR < 60 ml/min/1.73 m2 or renal replacement therapy or kidney transplant) using age-, sex- and center-adjusted models and measured genotyped within the variance component models. MYH9 SNPs were not significantly associated with kidney traits in additive or recessive genetic adjusted models. MYH9 haplotypes were also not significantly associated with kidney outcomes. In conclusion, common variants in MYH9 polymorphisms may not confer an increased risk of CKD in American Indian populations. Identification of the actual functional genetic variation responsible for the associations seen in African-Americans will likely help to clarify the lack of replication of this gene in our population of American Indians.  相似文献   

7.
Genome-wide association studies (GWAS) of obesity measures have identified associations with single nucleotide polymorphisms (SNPs). However, no large-scale evaluation of gene-environment interactions has been performed. We conducted a search of gene-environment (G × E) interactions in post-menopausal African-American and Hispanic women from the Women’s Health Initiative SNP Health Association Resource GWAS study. Single SNP linear regression on body mass index (BMI) and waist-to-hip circumference ratio (WHR) adjusted for multidimensional-scaling-derived axes of ancestry and age was run in race-stratified data with 871,512 SNPs available from African-Americans (N = 8,203) and 786,776 SNPs from Hispanics (N = 3,484). Tests of G × E interaction at all SNPs for recreational physical activity (m h/week), dietary energy intake (kcal/day), alcohol intake (categorical), cigarette smoking years, and cigarette smoking (ever vs. never) were run in African-Americans and Hispanics adjusted for ancestry and age at interview, followed by meta-analysis of G × E interaction terms. The strongest evidence for concordant G × E interactions in African-Americans and Hispanics was for smoking and marker rs10133840 (Q statistic P = 0.70, beta = ?0.01, P = 3.81 × 10?7) with BMI as the outcome. The strongest evidence for G × E interaction within a cohort was in African-Americans with WHR as outcome for dietary energy intake and rs9557704 (SNP × kcal = ?0.04, P = 2.17 × 10?7). No results exceeded the Bonferroni-corrected statistical significance threshold.  相似文献   

8.
This study investigates both the level of toxic metals in children with autism and the possible association of those toxic metals with autism severity. This study involved 55 children with autism ages 5–16 years compared to 44 controls with similar age and gender. The study included measurements of toxic metals in whole blood, red blood cells (RBC), and urine. The autism group had higher levels of lead in RBC (+41 %, p?=?0.002) and higher urinary levels of lead (+74 %, p?=?0.02), thallium (+77 %, p?=?0.0001), tin (+115 %, p?=?0.01), and tungsten (+44 %, p?=?0.00005). However, the autism group had slightly lower levels of cadmium in whole blood (?19 %, p?=?0.003). A stepwise, multiple linear regression analysis found a strong association of levels of toxic metals with variation in the degree of severity of autism for all the severity scales (adjusted R 2 of 0.38–0.47, p?<?0.0003). Cadmium (whole blood) and mercury (whole blood and RBC) were the most consistently significant variables. Overall, children with autism have higher average levels of several toxic metals, and levels of several toxic metals are strongly associated with variations in the severity of autism for all three of the autism severity scales investigated.  相似文献   

9.
Drosophila alcohol dehydrogenase (ADH) is an NAD(H)-dependent oxidoreductase that catalyzes the oxidation of alcohols and aldehydes. Structurally and biochemically distinct from all the reported ADHs (typically, the mammalian medium-chain dehydrogenase/reductase–ethanol-metabolizing enzyme), it stands as the only small-alcohol transforming system that has originated from a short-chain dehydrogenase/reductase (SDR) ancestor. The crystal structures of the apo, binary (E·NAD+) and three ternary (E·NAD+·acetone, E·NAD+·3-pentanone and E·NAD+·cyclohexanone) forms of Drosophila lebanonensis ADH have allowed us to infer the structural and kinetic features accounting for the generation of the ADH activity within the SDR lineage.  相似文献   

10.
Prior studies have identified common genetic variants influencing diabetic and non-diabetic nephropathy, diseases which disproportionately affect African Americans. Recently, exome sequencing techniques have facilitated identification of coding variants on a genome-wide basis in large samples. Exonic variants in known or suspected end-stage kidney disease (ESKD) or nephropathy genes can be tested for their ability to identify association either singly or in combination with known associated common variants. Coding variants in genes with prior evidence for association with ESKD or nephropathy were identified in the NHLBI-ESP GO database and genotyped in 5,045 African Americans (3,324 cases with type 2 diabetes associated nephropathy [T2D-ESKD] or non-T2D ESKD, and 1,721 controls) and 1,465 European Americans (568 T2D-ESKD cases and 897 controls). Logistic regression analyses were performed to assess association, with admixture and APOL1 risk status incorporated as covariates. Ten of 31 SNPs were associated in African Americans; four replicated in European Americans. In African Americans, SNPs in OR2L8, OR2AK2, C6orf167 (MMS22L), LIMK2, APOL3, APOL2, and APOL1 were nominally associated (P = 1.8 × 10?4–0.044). Haplotype analysis of common and coding variants increased evidence of association at the OR2L13 and APOL1 loci (P = 6.2 × 10?5 and 4.6 × 10?5, respectively). SNPs replicating in European Americans were in OR2AK2, LIMK2, and APOL2 (P = 0.0010-0.037). Meta-analyses highlighted four SNPs associated in T2D-ESKD and all-cause ESKD. Results from this study suggest a role for coding variants in the development of diabetic, non-diabetic, and/or all-cause ESKD in African Americans and/or European Americans.  相似文献   

11.
The class IV alcohol dehydrogenase gene ADH7 encodes an enzyme that is involved in ethanol and retinol metabolism. ADH7 is expressed mainly in the upper gastrointestinal tract and not in the liver, the major site of expression of the other closely related ADHs. We identified an intergenic sequence (iA1C), located between ADH7 and ADH1C, that has enhancer-blocking activity in liver-derived HepG2 cells that do not express their endogenous ADH7. This enhancer blocking function was cell- and position-dependent, with no activity seen in CP-A esophageal cells that express ADH7 endogenously. iA1C function was not specific to the ADH enhancers; it had a similar cell-specific effect on the SV40 enhancer. The CCCTC-binding factor (CTCF), an insulator binding protein, bound iA1C in HepG2 cells but not in CP-A cells. Our results suggest that in liver-derived cells, iA1C blocks the effects of ADH enhancers and thereby contributes to the cell specificity of ADH7 expression.  相似文献   

12.
A recently published genome-wide association study (GWAS) in European populations identified several loci at 4q21, 4q23 and 12q24 that were associated with risk of upper aerodigestive tract (UADT) cancers, including esophageal squamous cell carcinoma (ESCC). In the current study, we conducted a case–control study in a Chinese population including 2,139 ESCC cases and 2,273 controls to evaluate the associations of six reported single nucleotide polymorphisms (SNPs) (rs1494961, rs1229984, rs1789924, rs971074, rs671 and rs4767364) with risk of ESCC. We found significant association with risk of ESCC for four SNPs, including rs1494961 in HEL308 at 4q21 [odds ratio (OR) = 1.15, 95 % confidence interval (CI) = 1.05–1.26], rs1229984 in ADH1B at 4q23 (OR = 1.24, 95 % CI = 1.13–1.36) and rs1789924 near ADH1C at 4q23 (OR = 1.20, 95 % CI = 1.03-1.39), and rs671 in ALDH2 at 12q24 (OR = 0.83, 95 % CI = 0.75–0.91). Combined analysis of these four SNPs showed a significant allele-dosage effect on ESCC risk for individuals with different number of risk alleles (P trend = 2.23 × 10?11). Compared with individuals with “0–2” risk allele, those carrying “3”, “4” or “5 or more” risk alleles had 1.42-, 1.66-, or 1.76-fold risk of ESCC, respectively. Thus, our findings indicate that rs1494961 at 4q21, rs1229984 and rs1789924 at 4q23, and rs671 at 12q24 may be used as genetic biomarkers for ESCC susceptibility in Chinese population.  相似文献   

13.
NAD(P)+-dependent alcohol dehydrogenases (ADH) are widely distributed in all phyla. These proteins can be assigned to three nonhomologous groups of isozymes, with group III being highly diverse with regards to catalytic activity and primary structure. Members of group III ADHs share a conserved stretch of amino acid residues important for cofactor binding and metal ion coordination, while sequence identities for complete proteins are highly diverse (<20 to >90 %). A putative group III ADH PaYqhD has been identified in BLAST analysis from the plant pathogenic enterobacterium Pectobacterium atrosepticum. The PaYqhD gene was expressed in the heterologous host Escherichia coli, and the recombinant protein was purified in a two-step purification procedure to homogeneity indicating an obligate dimerization of monomers. Four conserved amino acid residues involved in metal ion coordination were substituted with alanine, and their importance for catalytic activity was confirmed by circular dichroism spectrum determination, in vitro, and growth experiments. PaYqhD exhibits optimal activity at 40 °C with short carbon chain aldehyde compounds and NADPH as cofactor indicating the enzyme to be an aldehyde reductase. No oxidative activities towards alcoholic compounds were detectable. EDTA completely inhibited catalytic activity and was fully restored by the addition of Co2+. Activity measurements together with sequence alignments and structure analysis confirmed that PaYqhD belongs to the butanol dehydrogenase-like enzymes within group III of ADHs.  相似文献   

14.
Dimerization of multiple maize ADHs studied in vivo and in vitro   总被引:2,自引:0,他引:2  
Anaerobically induced primary roots simultaneously express two alcohol dehydrogenase (Adh) genes which specify three types of electrophoretically separable dimers: Set I, II, and III ADH. The S inbred line yields a particular activity ratio among these three sets. By use of an Adh 1 null mutant allele and in vitro chemical dissociation and reassociation of ADH dimers, these studies extrapolate from an ADH activity ratio to the actual ratio of ADH protein. Conclusions are that (1) ADH1 and ADH2 promoters dimerize randomly in vivo and in vitro, (2) the heterodimeric isozyme (Set II) is approximately the enzymological sum of its subunits under these assay conditions, and (3) ADH-2 subunits are from 10 to 20% as active as ADH1 subunits under these assay conditions. These conclusions imply that the unlinked Adh genes are coordinately regulated and reconfirm the two-gene-three-dimer model for the maize ADH isozymes.  相似文献   

15.
A prior linkage scan in Pima Indians identified a putative locus for type two diabetes (T2D) and body mass index (BMI) on chromosome 11q23-25. Association mapping across this region identified single nucleotide polymorphisms (SNPs) in the trehalase gene (TREH) that were associated with T2D. To assess the putative connection between trehalase activity and T2D, we performed a linkage study for trehalase activity in 570 Pima Indians who had measures of trehalase activity. Strong evidence of linkage of plasma trehalase activity (LOD = 7.0) was observed in the TREH locus. Four tag SNPs in TREH were genotyped in these subjects and plasma trehalase activity was highly associated with three SNPs: rs2276064, rs117619140 and rs558907 (p = 2.2 × 10?11–1.4 × 10?23), and the fourth SNP, rs10790256, was associated conditionally on these three (p = 2.9 × 10?7). Together, the four tag SNPs explained 51 % of the variance in plasma trehalase activity and 79 % of the variance attributed to the linked locus. These four tag SNPs were further genotyped in 828 subjects used for association mapping of T2D, and rs558907 was associated with T2D (odds ratio (OR) 1.94, p = 0.002). To assess replication of the T2D association, all four tag SNPs were additionally genotyped in two non-overlapping samples of Native Americans. Rs558907 was reproducibly associated with T2D in 2,942 full-heritage Pima Indians (OR 1.27 p = 0.03) and 3,897 “mixed” heritage Native Americans (OR 1.21, p = 0.03), and the strongest evidence for association came from combining all samples (OR 1.27 p = 1.6 × 10?4, n = 7,667). However, among 320 longitudinally studied subjects, measures of trehalase activity from a non-diabetic exam did not predict those who would eventually develop diabetes versus those who would remain non-diabetic (hazard ratio 0.94 per SD of trehalase activity, p = 0.29). We conclude that variants in TREH control trehalase activity, and although one of these variants is also reproducibly associated with T2D, it is likely that the effect of the SNP on risk of T2D occurs by a mechanism different than affecting trehalase activity. Alternatively, TREH variants may be tagging a nearby T2D locus.  相似文献   

16.
Uterine fibroid (UFs) affect 77 % of women by menopause and account for $9.4 billion in healthcare costs each year. Although UFs are heritable, genetic risk is poorly understood. The first genome-wide association study (GWAS) of UFs was recently performed in a Japanese population, with reported genome-wide significance for single nucleotide polymorphisms (SNPs) across three chromosomal regions. We tested these SNPs for association with UFs in US cohorts. Women were enrolled in the Right from the Start (RFTS) cohort and the BioVU DNA repository. UF status in both cohorts was determined by pelvic imaging. We tested 65 candidate and haplotype-tagging SNPs for association with UFs presence using logistic regression in RFTS and the top three GWAS-associated SNPs in BioVU. We also combined association results from both cohorts using meta-analysis. 1,086 European American (EA) cases and 1,549 controls were examined. Two SNP associations replicated [blocked early in transport 1 homolog (BET1L) rs2280543, RFTS–BioVU meta-odds ratio (OR) = 0.67 95 % confidence interval (CI) 0.38–0.96, Q = 0.70, I = 0, p = 6.9 × 10?3; trinucleotide repeat containing 6B (TNRC6B) rs12484776, RFTS–BioVU meta-OR = 1.21, 95 % CI 1.07–1.35, Q = 0.24, I = 28.37, p = 8.7 × 10?3). Meta-analyses combining evidence from RFTS, BioVU, and prior GWAS showed little heterogeneity in effect sizes across studies, with meta-p values between 7.45 × 10?8 and 3.89 × 10?9, which were stronger than prior GWAS and supported associations observed for all previously identified loci. These data suggest common variants increase risk for UF in both EA and Japanese populations. However, further research is needed to assess the role of these genes across other racial groups.  相似文献   

17.
Genome-wide association studies (GWAS) have been successful in identifying common genetic variation involved in susceptibility to etiologically complex disease. We conducted a GWAS to identify common genetic variation involved in susceptibility to upper aero-digestive tract (UADT) cancers. Genome-wide genotyping was carried out using the Illumina HumanHap300 beadchips in 2,091 UADT cancer cases and 3,513 controls from two large European multi-centre UADT cancer studies, as well as 4,821 generic controls. The 19 top-ranked variants were investigated further in an additional 6,514 UADT cancer cases and 7,892 controls of European descent from an additional 13 UADT cancer studies participating in the INHANCE consortium. Five common variants presented evidence for significant association in the combined analysis (p≤5×10−7). Two novel variants were identified, a 4q21 variant (rs1494961, p = 1×10−8) located near DNA repair related genes HEL308 and FAM175A (or Abraxas) and a 12q24 variant (rs4767364, p = 2×10−8) located in an extended linkage disequilibrium region that contains multiple genes including the aldehyde dehydrogenase 2 (ALDH2) gene. Three remaining variants are located in the ADH gene cluster and were identified previously in a candidate gene study involving some of these samples. The association between these three variants and UADT cancers was independently replicated in 5,092 UADT cancer cases and 6,794 controls non-overlapping samples presented here (rs1573496-ADH7, p = 5×10−8; rs1229984-ADH1B, p = 7×10−9; and rs698-ADH1C, p = 0.02). These results implicate two variants at 4q21 and 12q24 and further highlight three ADH variants in UADT cancer susceptibility.  相似文献   

18.
Both schizophrenia (SCZ) and autism spectrum disorders (ASD) are neuropsychiatric disorders with overlapping genetic etiology. Protocadherin 15 (PCDH15), which encodes a member of the cadherin super family that contributes to neural development and function, has been cited as a risk gene for neuropsychiatric disorders. Recently, rare variants of large effect have been paid attention to understand the etiopathology of these complex disorders. Thus, we evaluated the impacts of rare, single-nucleotide variants (SNVs) in PCDH15 on SCZ or ASD. First, we conducted coding exon-targeted resequencing of PCDH15 with next-generation sequencing technology in 562 Japanese patients (370 SCZ and 192 ASD) and detected 16 heterozygous SNVs. We then performed association analyses on 2,096 cases (1,714 SCZ and 382 ASD) and 1,917 controls with six novel variants of these 16 SNVs. Of these six variants, four (p.R219K, p.T281A, p.D642N, c.3010-1G>C) were ultra-rare variants (minor allele frequency < 0.0005) that may increase disease susceptibility. Finally, no statistically significant association between any of these rare, heterozygous PCDH15 point variants and SCZ or ASD was found. Our results suggest that a larger sample size of resequencing subjects is necessary to detect associations between rare PCDH15 variants and neuropsychiatric disorders.  相似文献   

19.
20.
Genomic prediction of the extreme forms of adult body height or stature is of practical relevance in several areas such as pediatric endocrinology and forensic investigations. Here, we examine 770 extremely tall cases and 9,591 normal height controls in a population-based Dutch European sample to evaluate the capability of known height-associated DNA variants in predicting tall stature. Among the 180 normal height-associated single nucleotide polymorphisms (SNPs) previously reported by the Genetic Investigation of ANthropocentric Traits (GIANT) genome-wide association study on normal stature, in our data 166 (92.2 %) showed directionally consistent effects and 75 (41.7 %) showed nominally significant association with tall stature, indicating that the 180 GIANT SNPs are informative for tall stature in our Dutch sample. A prediction analysis based on the weighted allele sums method demonstrated a substantially improved potential for predicting tall stature (AUC = 0.75; 95 % CI 0.72–0.79) compared to a previous attempt using 54 height-associated SNPs (AUC = 0.65). The achieved accuracy is approaching practical relevance such as in pediatrics and forensics. Furthermore, a reanalysis of all SNPs at the 180 GIANT loci in our data identified novel secondary association signals for extreme tall stature at TGFB2 (P = 1.8 × 10?13) and PCSK5 (P = 7.8 × 10?11) suggesting the existence of allelic heterogeneity and underlining the importance of fine analysis of already discovered loci. Extrapolating from our results suggests that the genomic prediction of at least the extreme forms of common complex traits in humans including common diseases are likely to be informative if large numbers of trait-associated common DNA variants are available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号