首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thymidylate synthetase (EC 2.1.1.45) from rat regenerating liver has been purified over 5000-fold to apparent homogeneity by a procedure involving two affinity methods. Molecular weight of the native enzyme was found to be about 68,000, as determined by gel filtration. Electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate yielded a single band of molecular weight of 35,000, suggesting that thymidylate synthetase is a dimer of very similar or identical subunits. The Michaelis constants for deoxyuridylate (dUMP) and (+/-)L-5,10-methylenetetrahydrofolate are 6.8 microM and 65 microM, respectively. Reaction kinetics and product inhibition studies reveal the enzymatic mechanism to be ordered sequential. 5-Fluoro-dUMP, halogenated analog of the nucleotide substrate is a competitive inhibitor of the enzyme, with an apparent Ki value of 5 nM. Amethopterin, analog of the cofactor is also a competitive inhibitor with an apparent Ki value of 23 microM.  相似文献   

2.
NADPH-dependent thymidylate synthetase from Streptomyces aureofaciens has been purified to homogenity by a two-step chromatographic procedure including anion-exchange chromatography and affinity chromatography on methotrexate-Sepharose 4B. The enzyme was purified 1025-fold with a 34% yield. Basic characteristics of the enzyme were determined: molecular weight of the enzyme subunit (28,000), pH and temperature optimum, effect of cations, dependency on reducing agents, Km values for dUMP, mTHF, and NADPH (3.78, 21.1, and 38.9 microM, respectively), and inhibition effect of 5-FdUMP. Binding studies revealed the enzyme mechanism to be ordered sequential: dUMP bound before mTHF. S. aureofaciens thymidylate synthetase exhibits an absolute requirement for NADPH for the enzyme activity--a unique feature not displayed by any of the thymidylate synthetases isolated so far. NADPH is not consumed during enzyme reaction, indicating its regulatory role. The properties of S. aureofaciens thymidylate synthetase show that it is a monofunctional bacterial enzyme.  相似文献   

3.
Conformational changes accompanying the formation of binary and tightly bound ternary complexes of thymidylate synthetase and all possible combinations of three folate analogs (N-10-ethyl-quinazoline, folic acid triglutamate, and folic acid) and three deoxyribonucleotides (5-fluoro-2'-deoxyuridylic acid (FdUMP), 2'-deoxyuridylic acid (dUMP), and thymidylic acid (dTMP] were studied by means of ultraviolet difference spectroscopy. The amplitudes of the spectral changes upon ternary complex formation were 2-3-fold greater than those generated by formation of binary enzyme-nucleotide and enzyme-folate analog complexes. Difference spectra of the ternary complexes all showed a major increase in absorbance in the region of 320-340 nm, presumably due to perturbations of the folate analog chromophores, whereas decreases in absorbance occurred over a range of 260-310 nm. N-10-ethyl-quinazoline tended to form the complex with the greatest filtration efficiency on nitrocellulose filters, followed by folic acid triglutamate and folic acid, whereas among the nucleotides, the most stable complexes were formed with FdUMP, followed by dUMP and dTMP. A correlation was observed between the apparent stability of the ternary complex and the magnitude of the absorbance change in its difference spectrum. The formation of the various ternary complexes showed three different categories of rate behavior: 1) very rapid formation of the complex; 2) biphasic formation with a rapid phase and a slow phase requiring up to 90 min for completion; and 3) in the case of the ternary complex formed with enzyme, FdUMP, and folic acid, only a slow phase of binding. The slow formation of the latter complex was accompanied by concomitantly slow changes in the difference spectrum. However, in those cases of biphasic formation of the complexes, almost all of the spectral change occurred rapidly, and very little of it corresponded to the slow phase of complex formation. To accommodate these observations, a model is proposed involving a sequential interaction of the two subunits of thymidylate synthetase.  相似文献   

4.
Accurate quantitation of thymidylate synthetase activity using a tritium-release assay is dependent upon measurement of only that tritium released from deoxy[5-3H]uridine monophosphate ([3H]dUMP) during the biosynthesis of thymidylate. Removal of remaining [3H]dUMP on completion of the assay by charcoal adsorption and correction for the nonenzymatic release of tritium are necessary. Although over 99% of [3H]dUMP is removed immediately following addition of charcoal, these studies demonstrate that sufficient [3H]dUMP can remain to prevent accurate measurement of low levels of thymidylate synthetase activity. By delaying measurement of radioactivity for at least 24 h following addition of charcoal, this problem is minimized. To account for nonenzymatic release of tritium, a blank containing enzyme extract with omission of ±,l-5,10-methylenetetrahydrofolate is demonstrated to be more effective than the commonly used blank in which water is substituted for enzyme extract. In samples containing 5-fluoro-2′-deoxyuridine monophosphate (FdUMP), a potent inhibitor of thymidylate synthetase activity, an alternative blank containing a high concentration of FdUMP (approximately 1mM) is useful in demonstrating a theoretical maximal or complete inhibition of thymidylate synthetase activity.  相似文献   

5.
Extracts of the tapeworm, Hymenolepis diminuta, catalyse N5,10-methylene-tetrahydrofolate-dependent release of tritium from [5-3H]dUMP, indicating the presence of thymidylate synthase. The enzyme activity was found in immature, mature and gravid proglottids, as well as in immature and mature oncospheres. The reaction showed pH optimum at 7.5. Its Michaelis constants were approximately 2 and 15 microM for dUMP and (+/-), L-N5,10-methylenetetrahydrofolate, respectively. Incubation of the tapeworm extracts with 5-F-[3H]dUMP and N5,10-methylenetetrahydrofolate resulted in formation of a labelled complex, separable under conditions of SDS polyacrylamide electrophoresis (mol. wt. of approx. 34,000), corresponding to thymidylate synthase subunit. Results of gel filtration of the above complex, under nondenaturing conditions, pointed to a dimeric structure of the enzyme.  相似文献   

6.
5'-Bromoacetamido-5'-deoxythymidine (BAT), 5'-iodoacetamido-5'-deoxythymidine (IAT), 5'-chloroacetamido-5'-deoxythymidine (CAT) and [14C]BAT were synthesized and their interactions with thymidylate synthase purified from L1210 cells were investigated. The inhibitory effects of these compounds on thymidylate synthase were in the order BAT greater than IAT greater than CAT, which is in agreement with their cytotoxic effects in L1210 cells. In the presence of substrate during preincubation, the concentration required for 50% inhibition of the enzyme activity by these inhibitors was 4-8-fold higher than it was in the absence of dUMP. The I50 values for BAT were 1 X 10(-5) M and 1.2 X 10(-6) M in the presence and absence, respectively, of dUMP during preincubation. These results were in agreement with the observed inhibition of thymidylate synthase by BAT in intact L1210 cells. A Lineweaver-Burk plot revealed that BAT behaved as a competitive inhibitor. The Km for the enzyme was 9.2 microM, and the Ki determined for competitive inhibition by BAT was 5.4 microM. Formation of a tight, irreversible complex is inferred from the finding that BAT-inactivation of thymidylate synthase was not reversible on prolonged dialysis and that the enzyme-BAT complex was nondissociable by gel filtration through a Sephadex G-25 column or by TSK-125 column chromatography. Incubation of thymidylate synthase with BAT resulted in time-dependent, irreversible loss of enzyme activity by first-order kinetics. The rate constant for inactivation was 0.4 min-1, and the steady-state constant of inactivation, Ki, was estimated to be 6.6 microM. The 5'-haloacetamido-5'-deoxythymidines provide specific inhibitors of thymidylate synthase that may also serve as reagents for studying the enzyme mechanism.  相似文献   

7.
Author index     
Thymidylate synthetase has been purified from cultures of Escherichia coli infected with bacteriophages T4 or T5, with the T4 enzyme being purified to at least 50% of homogeneity, and both enzymes being resolved from the corresponding host enzyme. The molecular weights are 58,000 for the T4 enzyme and 55,000 for the T5 enzyme, as estimated by gel filtration and confirmed for the T4 enzyme by sucrose gradient analysis. Disc gel electrophoresis of the T4 enzyme in sodium dodecyl sulfate gives a single band with a molecular weight of 29,000, suggesting that the enzyme is composed of two subunits. Kinetic analysis of the inhibition of the T4 enzyme by 5-fluorodeoxyuridylate (FdUMP) gives results similar to those earlier reported for the T2 and T6 enzymes. Inhibition is competitive with respect to deoxyuridylate (dUMP) if the enzyme is not preincubated with inhibitor, but a brief preincubation of enzyme and inhibitor in the presence of 5, 10-methylenetetrahydrofolate generates a pattern of noncompetitive, stoichiometric inhibition. FdUMP remains bound to the enzyme through gel filtration chromatography, consistent with various observations that this inhibitor is covalently bound. However, the enzyme-inhibitor complex is dissociated by treatment with sodium dodecyl sulfate prior to chromatography. Moreover, in contrast to studies on thymidylate synthetase from other sources, oxidation of tetrahydrofolate by FdUMP-inhibited enzyme could not be detected. Inhibition of the T5 enzyme by FdUMP is not stoichiometric, and the enzyme-inhibitor complex is readily dissociated by gel filtration. These findings suggest that there are significant differences in mechanism of FdUMP binding by thymidylate synthetases of different origins. Inhibition of the T4 enzyme by trifluoromethyldeoxyuridine 5′-monophosphate (F3dTMP) follows the kinetics of stoichiometric inhibition, but data from both gel filtration and enzyme-inhibitor titration indicate that the enzyme binds 12–13 times as much F3dTMP as FdUMP, suggesting that most of the F3dTMP is bound at noncatalytic sites.  相似文献   

8.
The thymidylate synthase (TS) activity in Leishmania major resides on the bifunctional protein thymidylate synthase-dihydrofolate reductase (TS-DHFR). We have isolated, either by Sephadex G-25 chromatography or by nitrocellulose filter binding, a binary complex between the substrate deoxyuridylate (dUMP) and TS from L. major. The kinetics of binding support a "slow binding" mechanism in which dUMP initially binds to TS in a rapid, reversible pre-equilibrium step (Kd approximately 1 microM), followed by a slow first-order step (k = 3.5 X 10(-3) s-1) which results in the isolable complex; the rate constant for the dissociation of dUMP from this complex was 2.3 X 10(-4) s-1, and the overall dissociation constant was approximately 0.1 microM. The stoichiometry of dUMP to enzyme appears to be 1 mol of nucleotide bound/mol of dimeric TS-DHFR. Binary complexes between the stoichiometric inhibitor 5-fluorodeoxyuridylate (FdUMP) and TS, and between the product deoxythymidylate (dTMP) and TS were also isolated by nitrocellulose filter binding. Competition experiments indicated that each of these nucleotides were binding to the same site on the enzyme and that this site was the same as that occupied by the nucleotide in the FdUMP-cofactor X TS ternary complex. Thus, it appeared that the binary complexes were occupying the active site of TS. However, the preformed isolable dUMP X TS complex is neither on the catalytic path to dTMP nor did it inhibit TS activity, even though the dissociation of dUMP from this complex is several orders of magnitude slower than catalytic turnover (approximately 3 s-1). The results suggest that dUMP binds to one of the two subunits of the native protein in a catalytically incompetent form which does not inhibit activity of the other subunit.  相似文献   

9.
Thymidylate synthetase is readily inactivated by trypsin, chymotrypsin, and carboxypeptidase A when incubated in 10–20 mm potassium phosphate buffer (pH 7.0). The loss is activity produced by trypsin and chymotrypsin is accomplished by extensive protein degradation, while inactivation by carboxypeptidase A is accompanied by release of the carboxyl-terminal valine only (Aull et al., 1974, J. Biol. Chem., 249, 1167–1172). In contrast, when the incubations are conducted in 100–200 mm potassium phosphate buffer (pH 7.0), the synthetase is not inactivated by any of the three enzymes and the results of amino acid analysis and sodium dodecyl sulfate disc gel electrophoresis demonstrate that proteolysis is prevented. The resistance of thymidylate synthetase to inactivation was shown not to be due to the inhibition of the proteolytic enzymes by the buffer. The inactivation is not prevented either by pteroylmonoglutamates or by 2′-deoxyuridine 5′-phosphate (dUMP) alone, but the presence of both is partially protective. The pteroylpolyglutamates, however, offer limited protection against carboxypeptidase A and chymotrypsin; in combination with dUMP, proteolytic inactivation of the snythetase by all three enzymes is prevented. Characterization of the properties of carboxypeptidase A-inactivated thymidylate synthetase reveals the following, (i) The binding of deoxynucleotides is unaltered, but the binding of a variety of pteroylpolyglutamate derivatives is reduced or abolished, (ii) Pteroylpolyglutamates are bound provided dUMP or an analog such as 5-fluorodUMP is present, (iii) Ternary complex formation between carboxypeptidase A-inactivated enzyme and (+)5,10-methylenetetrahydropteroyltetraglutamate plus 5-fluorodUMP occurs in the same molar binding ratio (1:2:2) at saturation as with the native enzyme, but differs from the native enzyme ternary complex in that the dissociation constant for 5-fluorodUMP is increased by approximately 105. In addition, there is no evidence for the formation of covalent linkages between the ligands and enzyme, (iv) The treated enzyme cannot catalyze tritium release from [3H5]dUMP in the presence of either (+)5,10-methylenepteroylmonoglutamate or (+)5,10-methylenetetrahydropteroyltetraglutamate.  相似文献   

10.
In contrast to (+)5,10-methylenetetrahydropteroylmonoglutamate which does not bind to Lactobacilluscasei thymidylate synthetase, the corresponding tetraglutamate analog binds to a single site with a KD = 2 × 10?5 M. Alkylation of one of the enzyme's four cysteines with N-ethylmaleimide or iodoacetate prevented the binding of dUMP, but did not affect the binding of the pteroyltetraglutamate. Inactivation of the synthetase with carboxypeptidase A, however, prevented the binding of (+)5,10-methylenetetrahydropteroyltetraglutamate but not that of dUMP. The binding of (+)5,10-methylenetetrahydropteroyltetraglutamate to native enzyme was associated with the appearance of a positive circular dichroic band at 303 nm ([θ] = 7 × 104 deg·cm2dmol?1). The latter effect was not impaired by the inhibition of the enzyme with N-ethylmaleimide, whereas formation of the ternary complex, coenzyme-synthetase-FdUMP, was prevented by alkylation. These studies reveal that thymidylate synthetase can be inactivated in a manner that does not prevent the binding of the substrates individually.  相似文献   

11.
The interaction of 5-fluorodeoxyuridylate (FdUMP) with thymidylate synthetase to form a binary complex has been widely reported, yet previous attempts to detect this complex by nitrocellulose filtration have failed. In contrast, a nitrocellulose-filter-binding assay utilizing [6-3H]FdUMP which measures the interaction of the enzyme with the nucleotide is reported. Extensive washing of the nitrocellulose-filtered complex between FdUMP and the enzyme resulted in no loss of bound ligand. Following denaturation with trichloroacetic acid, intact complex was detected by nitrocellulose filtration. No binding was observed between 5-fluorodeoxyuridine and the enzyme or between FdUMP and the N-ethylmaleimide-modified enzyme. As measured by the nitrocellulose filtration method, at least a 600-fold excess of FdUMP to enzyme was required to achieve saturation. The stoichiometry of FdUMP bound to the enzyme detected at saturation was 0.5-0.6 for native samples. When identical samples were subjected to denaturation prior to filtration, the stoichiometry of nucleotide binding was 0.3-0.4.  相似文献   

12.
Thymidylate synthetase from amethopterin-resistant Lactobacilluscasei is rapidly and completely inactivated by 2,3-butanedione in borate buffer, a reagent that is highly selective for the modification of arginyl residues. The reversible inactivation follows pseudo-first order kinetics and is enhanced by borate buffer. dUMP and dTMP afford significant protection against inactivation while (±)-5,10-methylenetetrahydrofolate and 7,8-dihydrofolate provide little protection. Unlike native enzyme, butanedione-modified thymidylate synthetase is incapable of interacting with 5-fluoro-2′-deoxyuridylate and 5,10-(+)-methylenetetrahydrofolate to form stable ternary complex. The results suggest that arginyl residues participate in the functional binding of dUMP.  相似文献   

13.
The formation of covalent binary complexes of thymidylate synthase and its nucleotide substrate dUMP, product dTMP, and inhibitor, 5-fluorodeoxyuridylate (FdUMP) was investigated using the trichloroacetic acid precipitation method. It was observed that, in addition to FdUMP, both dUMP and dTMP were capable of covalent interactions with the enzyme in the absence of added folates. The presence of folate, dihydrofolate, or tetrahydrofolate (H4folate) was found to produce substantial enhancements in the covalent binding of both FdUMP and dUMP to the enzyme with H4folate being the most effective agent. Further, covalent binary complexes of the enzyme with the three radiolabeled nucleotides were isolated by trichloroacetic acid precipitation and subjected to CNBr cleavage. The active-site CNBr peptide was isolated by reverse phase high performance liquid chromatography, and the first five N-terminal amino acid residues were sequenced by the dansyl-Edman procedure. Each active site peptide obtained from the covalent binary complexes as well as that from the covalent inhibitory ternary complex formed from enzyme, FdUMP, and 5,10-methylene-H4folate exhibited an identical sequence of Ala-Leu-Pro-Pro-(X)-, and the 5th amino acid was found to be associated with radiolabeled nucleotide ligand. Dansyl-Edman sequence analysis of the active site CNBr peptide, derived from enzyme which had been treated with iodoacetic acid, gave a sequence of Ala-Leu-Pro-Pro-CmCys (where CmCys is carboxymethylcysteine), thus confirming the fact that the fifth residue from the N terminus is Cys-198. In all the cases, the active site Cys-198 residue was found to be covalently linked to the nucleotides. These results provide unequivocal proof that the covalent binary complexes of enzyme with dUMP and dTMP predicted in the catalytic reaction mechanism actually exist.  相似文献   

14.
Recombinant mouse thymidylate synthase (TS) expressed at high levels in Escherichia coli was purified to homogeneity in greater than 70% yield by a rapid three-step procedure. Both 0.1% Triton X-100 and 10% glycerol were required to stabilize the enzyme whose activity remained unchanged after 1 month when stored at -20 degrees C. Thermal inactivation of the enzyme was a first-order process at 37 degrees C, with t1/2 values of 6.9, 15.6 and 3.0 min at pH 5.5, 7.0 and 8.5, respectively. The presence of saturating levels of dUMP at pH 8.5 increased the t1/2 of inactivation of 38 min. The pH profile for enzyme activity showed a narrow optimum region centered at pH 7.0, which was mirrored by the shape of the Km, dUMP/Vmax plot. The pH dependence of Kd for the covalent inhibitory ternary complex of enzyme, 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate exhibited a broad minimum between pH 5.5 and 8.5, and ranged between 3.1, 0.8 and 1.1 nM at pH 5.5, 7.0 and 8.5, respectively. The UV/VIS spectrum of the native enzyme exhibited a maximum at 280 nm (epsilon = 98,200 M-1 cm-1), while that of the inhibitory ternary complex showed an additional maximum at 320 nm. The 19F-NMR spectrum of the mouse enzyme:FdUMP binary complex revealed two new resonances at -2.8 and -34.8 ppm. The most deshielded resonance represented the noncovalent binary complex while the other resonance was assigned to the nucleotide covalently bound to the enzyme. The alteration of nucleotide binding equilibria produced by addition of H4 folate was exemplified by both an increase in intensity and a 5 ppm deshielding of the resonance attributed to the covalent FdUMP-enzyme complex. Addition of formaldehyde to the latter mixture produced the covalent ternary complex which resulted in the collapse of the resonances at -2.8 and -39.5 ppm and the appearance of a new resonance at -12.4 ppm.  相似文献   

15.
M A Moore  F Ahmed  R B Dunlap 《Biochemistry》1986,25(11):3311-3317
The proposed mechanism of action of thymidylate synthase envisages the formation of a covalent ternary complex of the enzyme with the substrate dUMP and the cofactor 5,10-methylenetetrahydrofolate (CH2H4folate). The proposed structure of this adduct has been based by analogy on that of the covalent inhibitory ternary complex thymidylate synthase-FdUMP-CH2H4folate. Our recent success in using the protein precipitant trichloroacetic acid to trap the latter complex and covalent binary complexes of the enzyme with FdUMP, dUMP, and dTMP led to the use of this technique in attempts to trap the transient putative covalent catalytic ternary complex. Experiments performed with [2-14C]dUMP and [3',5',7,9-3H]CH2H4folate show that both the substrate and the cofactor remained bound to the protein after precipitation with trichloroacetic acid. The trapped putative covalent catalytic complex was subjected to CNBr fragmentation, and the resulting peptides were fractionated by reverse-phase high-pressure liquid chromatography. The isolated active site peptide was shown to retain the two ligands and was further characterized by a limited sequence analysis using the dansyl Edman procedure. The inhibitory ternary complex, which was formed with [14C]FdUMP and [3H]CH2H4folate, served as a control. The active site peptide isolated from the CNBr-treated inhibitory ternary complex was also subjected to sequence analysis. The two peptides exhibited identical sequences for the first four residues from the N-terminus, Ala-Leu-Pro-Pro, and the fifth amino acid residue was found to be associated with the labeled nucleotides and the cofactor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Essential tyrosyl residues in Lactobacillus casei thymidylate synthetase   总被引:1,自引:0,他引:1  
Sulfhydryl-blocked thymidylate synthetase (EC 2.1.1.4.5) is rapidly inactivated by low concentrations of tetranitromethane. This reagent first nitrates two non-essential tyrosines per dimeric enzyme molecule followeed by two essential tyrosines with no oxidation of sulfhydryl groups. dUMP affords significant protection against inactivation. These results suggest that essential tyrosyl residues are present in the active sites of the enzyme.  相似文献   

17.
Thymidylate synthetase from mouse leukemic L1210 cells was purified to electrophoretic homogeneity with 70% yield as a result of an affinity chromatography procedure based on reversible deoxyuridylate-dependent binding of the enzyme to a stable biospecific adsorbent, 10-formyl-5,8-dideazafolate, immobilized on aminoethyl-Sepharose. The presence of neutral detergents, Triton X-100, or Nonidet P40 stabilized thymidylate synthetase during purification. Analytical electrophoresis of the enzyme treated with an excess of 5-fluorodeoxyuridylate and 5,10-methylenetetrahydrofolate showed the presence of two forms of thymidylate synthetase--5-fluorodeoxyuridylate.5,10-methylenetetrahydrofolate complex, indicating that there are two binding sites for 5-fluorodeoxyuridylate present on the enzyme molecule. Molecular weight of native thymidylate synthetase was found to be 75,000, whereas that for the monomer was 38,500.  相似文献   

18.
  • 1.1. Changes in the spectrum of pyridoxal phosphate (PLP) were produced by adding an equimolar amount of native thymidylate synthase, but not by adding denatured enzyme or enzyme modified by sulfhydryl-blocking reagents.
  • 2.2. The dissociation constant of the thymidylate synthase-PLP complex determined by equilibrium dialysis was 9 ± 1.6 μM, the maximum number of PLP molecules bound per molecule of native thymidylate synthase was 2.5 ± 0.4, and the Hill coefficient was 0.97.
  • 3.3. No evidence of PLP binding was found with denatured thymidylate synthase, and only slight binding was observed when enzyme SH groups were blocked or when the active site was blocked with 5-fluorodeoxyuridylate (FdUMP) and methylenetetrahydrofoliate.
  • 4.4. The presence of dUMP, dTMP, or FdUMP interfered with the binding of PLP to thymidylate synthase, and the presence of equimolar amounts of PLP interfered with the binding of dUMP.
  相似文献   

19.
Interaction of thymidylate synthetase with 5-nitro-2'-deoxyuridylate   总被引:1,自引:0,他引:1  
5-Nitro-2'-deoxyuridylate (NO2dUMP) is a potent mechanism-based inhibitor of dTMP synthetase. After formation of a reversible enzymeìnhibitor complex, there is a rapid first order loss of enzyme activity which can be protected against by the nucleotide substrate dUMP. From studies of model chemical counterparts and the NO2dUMPdTMP synthetase complex, it has been demonstrated that a covalent bond is formed between a nucleophile of the enzyme and carbon 6 of NO2dUMP. The covalent NO2dUMPènzyme complex is sufficiently stable to permit isolation on nitrocellulose membranes, and dissociates to give unchanged NO2-dUMP with a first order rate constant of 8.9 x 10(-3) min-1. Dissociation of the complex formed with [6-3H]NO2dUMP shows a large alpha-secondary isotope effect of 19%, verifying that within the covalent complex, carbon 6 of the heterocycle is sp3-hybridized. The spectral changes which accompany formation of the NO2dUMPènzyme complex support the structural assignment and, when used to tritrate the binding sites, demonstrate that 2 mol of NO2dUMP are bound/mol of dimeric enzyme. The interaction of NO2dUMP with dTMP synthetase is quite different than that of other mechanism-based inhibitors such as 5-fluoro-2'-deoxyuridylate in that it neither requires nor is facilitated by the concomitant interaction of the folate cofactor, 5,10-CH2-H4folate, and that the covalent complex formed is unstable to protein denaturants.  相似文献   

20.
A Kamb  J S Finer-Moore  R M Stroud 《Biochemistry》1992,31(51):12876-12884
We have solved crystal structures of two complexes with Escherichia coli thymidylate synthase (TS) bound either to the cofactor analog N10-propargyl-5,8-dideazafolate (CB3717) or to a tighter binding polygutamyl derivative of CB3717. These structures suggest that cofactor binding alone is sufficient to induce the conformational change in TS; dUMP binding is not required. Because polyglutamyl folates are the primary cofactor form in vivo, and because they can bind more tightly than dUMP to TS, these structures may represent a key intermediate along the TS reaction pathway. These structures further suggest that the dUMP binding site is accessible in the TS-cofactor analog binary complexes. Conformational flexibility of the binary complex may permit dUMP to enter the active site of TS while the cofactor is bound. Alternatively, dUMP may enter the active site from the opposite side that the cofactor appears to enter; that is, through a portal flanked by arginines that also coordinate the phosphate group in the active site. Entry of dUMP through this portal may allow dUMP to bind to a TS-cofactor binary complex in which the complex has completed its conformational transition to the catalytically competent structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号