首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
《Epigenetics》2013,8(1):24-29
Recent years have seen considerable advances in our understanding of early mammalian development leading up to the establishment of the first cell lineages, with important implications for the behaviour of stem cells derived from the early embryo. Dramatic new insights have also propelled the field of epigenetics with the identification of 5-hydroxymethylcytosine as an additional base modification and the pervasiveness of asymmetrical non-CG DNA methylation specifically in ES cells. Prompted by our findings on the role of DNA methylation in cell lineage commitment, this review highlights recent insights into the genetic-epigenetic intersection in the establishment of the placental trophoblast lineage that is essential for embryo implantation, nutrition and survival. The unique trophoblast epigenotype is instrumental for normal trophoblast differentiation and placental function, and consequently trophoblast is particularly susceptible to regrogramming failures.  相似文献   

2.
哺乳动物胚胎发育产生的第一个细胞系的分离是内细胞团和滋养层的分离,不同哺乳动物之间胚胎干细胞向滋养层细胞分化不同,滋养层细胞对胚胎的植入、促进胚胎在子宫内的生存和生长至关重要.人胚胎干细胞为研究人类胚胎发育及向滋养层分化提供了一个独特的模型.人胚胎干细胞可以在实验室条件下保持无限期稳定的培养,用于最初胚胎和滋养外胚层发生的机制研究.目前人胚胎干细胞分化为滋养层细胞在体外可以通过自发分化、基因敲除、分离EB小体和BMP4诱导等几种途径实现.不同哺乳动物之间胚胎干细胞向滋养层分化机制,主要通过信号通路如BMP4,LIF等以及某些标志基因如OCT4,CDX2,Eomes等的变化调节.人胚胎干细胞向滋养层分化的研究为临床应用提供了一定的基础.  相似文献   

3.
Cells of the trophoblast lineage make up the epithelial compartment of the placenta, and their rapid development is essential for the establishment and maintenance of pregnancy. A diverse array of specialized trophoblast subtypes form throughout gestation and are responsible for mediating implantation, as well as promotion of blood to the implantation site, changes in maternal physiology, and nutrient and gas exchange between the fetal and maternal blood supplies. Within the last decade, targeted mutations in mice and the study of trophoblast stem cells in vitro have contributed greatly to our understanding of trophoblast lineage development. Here, we review recent insights into the molecular pathways regulating trophoblast lineage segregation, stem cell maintenance, and subtype differentiation.  相似文献   

4.
5.
Defects in placental development lead to pregnancies at risk for miscarriage and intrauterine growth retardation and are associated with preeclampsia, a leading cause of maternal death and premature birth. In preeclampsia, impaired placental formation has been associated with alterations in a specific trophoblast lineage, the invasive trophoblast cells. In this study, an RT-PCR Trophoblast Gene Expression Profile previously developed by our laboratory was utilized to examine the lineage-specific gene expression of the rat Rcho-1 trophoblast cell line. Our results demonstrated that Rcho-1 cells represent an isolated, trophoblast population committed to the giant cell lineage. RT-PCR analysis revealed that undifferentiated Rcho-1 cells expressed trophoblast stem cell marker, Id2, and trophoblast giant cell markers. On differentiation, Rcho-1 cells downregulated Id2 and upregulated Csh1, a marker of the trophoblast giant cell lineage. Neither undifferentiated nor differentiated Rcho-1 cells expressed spongiotrophoblast marker Tpbpa or labyrinthine markers Esx1 and Tec. Differentiating Rcho-1 cells in hypoxia did not alter the expression of lineage-specific markers; however, hypoxia did inhibit the downregulation of the trophoblast stem cell marker Id2. Differentiation in hypoxia also blocked the induction of CSH1 protein. In addition, hypoxia inhibited stress fiber formation and abolished the induction of palladin, a protein associated with stress fiber formation and focal adhesions. Thus, Rcho-1 cells can be maintained as a proliferative, lineage-specific cell line that is committed to the trophoblast giant cell lineage on differentiation in both normoxic and hypoxic conditions; however, hypoxia does inhibit aspects of trophoblast giant cell differentiation at the molecular, morphological, and functional levels.  相似文献   

6.
The trophoblast layers of the mammalian placenta carry out many complex functions required to pattern the developing embryo and maintain its growth and survival in the uterine environment. Genetic disruption of many gene pathways can result in embryonic lethality because of placental failure, potentially confusing the interpretation of mouse knockout phenotypes. Development of tools to specifically and efficiently manipulate gene expression in the trophoblast lineage would greatly aid understanding of the relative roles of different genetic pathways in the trophoblast versus embryonic lineages. We show that short-term lentivirus-mediated infection of mouse blastocysts can lead to rapid expression of a green fluorescent protein (GFP) transgene specifically in the outer trophoblast progenitors and their later placental derivatives. Efficient trophoblast-specific gene knockdown can also be produced by lentivirus-mediated pol III-driven short hairpin RNA (shRNA) and efficient trophoblast-specific gene knockout by pol II-driven Cre recombinase lentiviral vectors. This lentivirus lineage-specific infection system thus facilitates both gain and loss of function studies during placental development in the mouse and potentially other mammalian species.  相似文献   

7.
Genetic insights into trophoblast differentiation and placental morphogenesis   总被引:12,自引:0,他引:12  
The placenta is comprised of an inner vascular network covered by an outer epithelium, called trophoblast, all designed to promote the delivery of nutrients to the fetus. Several specialized trophoblast cell subtypes arise during development to promote this function, including cells that invade the uterus to promote maternal blood flow to the implantation site, and other cells that fuse into a syncytium, expand and fold to increase the surface area for efficient transport. Mutation of many genes in mice results in embryonic mortality or fetal growth restriction due to defects in placental development. Several important principles about placental development have emerged from these studies. First, distinct molecular pathways regulate the differentiation of the various trophoblast cell subtypes. Second, trophoblast proliferation, differentiation and morphogenesis are highly regulated by interactions with adjacent cell types. Finally, the specific classes of mutant phenotypes observed in the placenta of knockout mice resemble those seen in humans that are associated with preeclampsia and intrauterine growth restriction.  相似文献   

8.
Specification of the trophectoderm is one of the earliest differentiation events of mammalian development. The trophoblast lineage derived from the trophectoderm mediates implantation and generates the fetal part of the placenta. As a result, the development of this lineage is essential for embryo survival. Derivation of trophoblast stem (TS) cells from mouse blastocysts was first described by Tanaka et al. 1998. The ability of TS cells to preserve the trophoblast specific property and their expression of stage- and cell type-specific markers after proper stimulation provides a valuable model system to investigate trophoblast lineage development whereby recapitulating early placentation events. Furthermore, trophoblast cells are one of the few somatic cell types undergoing natural genome amplification. Although the molecular pathways underlying trophoblast polyploidization have begun to unravel, the physiological role and advantage of trophoblast genome amplification remains largely elusive. The development of diploid stem cells into polyploid trophoblast cells in culture makes this ex vivo system an excellent tool for elucidating the regulatory mechanism of genome replication and instability in health and disease. Here we describe a protocol based on previous reports with modification published in Chiu et al. 2008.Download video file.(116M, mp4)  相似文献   

9.
10.
The preimplantation embryo starts as a single cell, the zygote. The first cell divisions do not lead to volume expansion, but rather to an increasing number of small cells. At the morula stage the first two cell lineages differentiate into the trophoblast and the inner cells mass/embryoblast. During development of the preimplantation embryo, apoptosis occurs only after the onset of the embryonic genome. It has become clear that the development of a healthy child requires not only very high rates of proliferation and differentiation, but also apoptosis, which is a crucial mechanism for morphogenesis and the development of the inner organs. Furthermore, the generation of specific cell types, such as lens cells, erythrocytes, and thrombocytes, depends on the apoptosis pathways. This is also true later in gestation, when the trophoblasts form the placenta and provide the epithelial cover of the villous trees of the placenta. This layer is in direct contact with maternal blood and, as do all epithelia, displays a continuous turnover of cells. Thus, apoptosis is a normal constituent of survival in this layer as well, and changes in the regulation and rate of apoptosis have deleterious effects on the trophoblast and consequently the developing embryo or fetus. Here we present a very brief overview of the importance of apoptosis for the development of the preimplantation embryo and the maintenance of placental trophoblasts. Furthermore, we highlight what happens when regulation of proliferation or apoptosis fails in these systems, and attempt to show that apoptosis is only the consequence of poor embryo or trophoblast development -- not its cause.  相似文献   

11.
12.
Trophoblast cell differentiation is crucial to the morphogenesis of the placenta and thus the establishment of pregnancy and the growth and development of the embryo/fetus. In the present review, we discuss current evidence for the existence of regulatory genes crucial to trophoblast cell differentiation and placental morphogenesis. The elucidation of regulatory pathways controlling normal differentiation of trophoblast cells will facilitate the identification of sensitive junctures in the regulatory pathways leading to various developmental disorders, including those associated with the initiation of pregnancy, fetal growth retardation and gestational trophoblast disease.  相似文献   

13.
Oxygen is a critical regulator of placentation. Early placental development occurs in a predominantly low oxygen environment and is, at least partially, under the control of hypoxia signaling pathways. In the present study, in vivo hypobaric hypoxia was used as an experimental tool to delineate hypoxia-sensitive events during placentation. Pregnant rats were exposed to the equivalent of 11% oxygen between days 6.5 and 13.5 of gestation. Pair-fed pregnant animals exposed to ambient conditions were included as a control group. Uterine mesometrial blood vessels in the hypoxia-exposed animals were greatly expanded and some contained large cuboidal cells that were positive for cytokeratin and other markers characteristic of invasive trophoblast cells. Unlike later in gestation, the route of trophoblast cell invasion in the hypoxia-exposed animals was restricted to endovascular, with no interstitial invasion observed. Hypoxia-activated endovascular trophoblast invasion required exposure to hypoxia from gestation day 8.5 to day 9.5. Activation of the invasive trophoblast lineage was also associated with an enlargement of the junctional zone of the chorioallantoic placenta, a source of invasive trophoblast cell progenitors. In summary, maternal hypoxia during early stages of placentation activates the invasive endovascular trophoblast cell lineage and promotes uterine vascular remodeling.  相似文献   

14.
15.
The reproductive tissues undergo profound structural changes and major immune adaptation to accommodate pregnancy. Granulocyte-macrophage colony-stimulating factor (GM-CSF) is one of an array of cytokines with pivotal roles in embryo implantation and subsequent development. Several cell lineages in the reproductive tract and gestational tissues synthesise GM-CSF under direction by ovarian steroid hormones and signalling agents originating in male seminal fluid and the conceptus. The pre-implantation embryo, invading placental trophoblast cells and the abundant populations of leukocytes controlling maternal immune tolerance are all subject to GM-CSF regulation. GM-CSF deficiency in pregnancy adversely impacts fetal and placental development, as well as progeny viability and growth after birth, highlighting this cytokine as a central maternal determinant of pregnancy outcome with clinical relevance in human fertility.  相似文献   

16.
The ERK/MAPK signaling pathway is involved in several cellular functions. Inactivation in mice of genes encoding members of this pathway is often associated with embryonic death resulting from abnormal placental development. The placenta is essential for nutritional and gaseous exchanges between maternal and embryonic circulations, as well as for the removal of metabolic wastes. These exchanges take place without direct contact between the two circulations. In mice, the hematoplacental barrier consists in a triple layer of trophoblast cells and endothelial cells of the embryo. MEK1 and MEK2 are double specificity serine-threonine/tyrosine kinases responsible for the activation of ERK1 and ERK2. Mek1 inactivation results in placental anomalies due to trophoblast cell proliferation and differentiation defects leading to severe delays in the development of placenta and causing the death of the embryo. Although Mek2(-/-) mutant mice survived without any apparent phenotype, double heterozygous Mek1(+/-)Mek2(+/-) mutants die during gestation from placental malformations. Together, these data emphasize the crucial role of the ERK/MAPK cascade in the formation of extraembryonic structures.  相似文献   

17.
18.
Trophoblast giant cells (TGCs) are the first terminally differentiated subtype to form in the trophoblast cell lineage in rodents. In addition to mediating implantation, they are the main endocrine cells of the placenta, producing several hormones which regulate the maternal endocrine and immune systems and promote maternal blood flow to the implantation site. Generally considered a homogeneous population, TGCs have been identified by their expression of genes encoding placental lactogen 1 or proliferin. In the present study, we have identified a number of TGC subtypes, based on morphology and molecular criteria and demonstrated a previously underappreciated diversity of TGCs. In addition to TGCs that surround the implantation site and form the interface with the maternal deciduas, we demonstrate at least three other unique TGC subtypes: spiral artery-associated TGCs, maternal blood canal-associated TGCs and a TGC within the sinusoidal spaces of the labyrinth layer of the placenta. All four TGC subtypes could be identified based on the expression patterns of four genes: Pl1, Pl2, Plf (encoded by genes of the prolactin/prolactin-like protein/placental lactogen gene locus), and Ctsq (from a placental-specific cathepsin gene locus). Each of these subtypes was detected in differentiated trophoblast stem cell cultures and can be differentially regulated; treatment with retinoic acid induces Pl1/Plf+ TGCs preferentially. Furthermore, cell lineage tracing studies indicated unique origins for different TGC subtypes, in contrast with previous suggestions that secondary TGCs all arise from Tpbpa+ ectoplacental cone precursors.  相似文献   

19.
The effect of leptin on mouse trophoblast cell invasion   总被引:7,自引:0,他引:7  
The hormone leptin is produced by adipose tissue and can function as a signal of nutritional status to the reproductive system. The expression of leptin receptor and, in some species, leptin, in the placenta suggests a role for leptin in placental development, but this role has not been elucidated. Leptin is required at the time of embryo implantation in the leptin-deficient ob/ ob mouse and has been shown to upregulate expression of matrix metalloproteinases (MMPs), enzymes involved in trophoblast invasion, in cultured human trophoblast cells. This led us to the hypothesis that leptin promotes the invasiveness of trophoblast cells crucial to placental development. We found that leptin stimulated mouse trophoblast cell invasion through a matrigel-coated insert on Day 10, but not Day 18 of pregnancy. Optimal stimulation occurred at a concentration of 50 ng/ml leptin, similar to the peak plasma leptin concentration during pregnancy in the mouse. Leptin treatment did not stimulate proliferation of mouse trophoblast cells in primary culture. Leptin stimulation of invasion was prevented by 25 muM GM6001, an inhibitor of MMP activity. Our results suggest that leptin may play a role in the establishment of the placenta during early pregnancy and that this function is dependent on MMP activity. This effect of leptin may represent one mechanism by which body condition affects placental development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号