首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Unusual gold-colored onions were selected from a F3 family originating from a cross between US-type yellow and Brazilian yellow onions. HPLC analysis showed that the gold onions contained a significantly reduced amount of quercetin, the most abundant flavonoid in onions. This result indicated that an early step in the flavonoid biosynthesis pathway might be abnormal in these onions. The expression of flavonoid synthesis genes isolated from onions was examined in gold onions and compared to that in onions of other colors by RT-PCR. The results showed that all genes were transcribed in gold onions as in red onions. In order to identify any critical mutations in flavonoid synthesis genes encoding enzymes involved in early steps of the pathway, the genomic sequence of chalcone isomerase (CHI) was obtained. A premature stop codon and a subsequent single base-pair addition causing a frameshift were identified in the coding region of the CHI gene in the gold onions. Co-segregation of the mutant allele of the CHI gene and the gold phenotype was investigated in the original F2 segregating population. Genotyping of three color groups (red, yellow and gold) of F2 onions revealed perfect co-segregation of the mutant CHI allele with the gold phenotype. All tested gold F2 onions were homozygous for the mutant CHI allele. This perfect co-segregation implies that the presence of a premature stop codon in the gold CHI gene results in an inactive CHI. Inactivation of CHI results in a block in the flavonoid biosynthesis pathway and the accumulation of chalcone derivatives, including a yellow pigment which might be responsible for the gold color in onions.Communicated by R. Hagemann  相似文献   

2.
Kim S  Bang H  Yoo KS  Pike L 《Molecules and cells》2007,23(2):192-197
Bulb color in onions (Allium cepa) is an important trait whose complex inheritance mechanism involves epistatic interactions among major color-related loci. Recent studies revealed that inactivation of dihydroflavonol 4-reductase (DFR) in the anthocyanin synthesis pathway was responsible for the color differences between yellow and red onions, and two recessive alleles of the anthocyanidin synthase (ANS) gene were responsible for a pink bulb color. Based on mutations in the recessive alleles of these two genes, PCR-based markers for allelic selection were developed. In this study, genotype analysis of onions from segregating populations was carried out using these PCR-based markers. Segregating populations were derived from the cross between yellow and red onions. Five yellow and thirteen pink bulbs from one segregating breeding line were genotyped for the two genes. Four pink bulbs were heterozygous for the DFR gene, which explains the continuous segregation of yellow and pink colors in this line. Most pink onions were homozygous recessive for the ANS gene, except for two heterozygotes. This finding indicated that the homozygous recessive ANS gene was primarily responsible for the pink color in this line. The two pink onions, heterozygous for the ANS gene, were also heterozygous for the DFR gene, which indicated that the pink color was produced by incomplete dominance of a red color gene over that of yellow. One pink line and six other segregating breeding lines were also analyzed. The genotyping results matched perfectly with phenotypic color segregation.  相似文献   

3.
4.
A candidate gene approach was used to determine the likely molecular identity of the c locus (yellow fruit color) in Fragaria vesca, a diploid (2n=2x=14) strawberry. Using PCR with degenerate primer pairs, intron-containing segments of structural genes coding for chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin synthase (ANS) and one Del-like regulatory gene in the anthocyanin biosynthetic pathway, were amplified, cloned and sequenced. Intron length polymorphisms for each of these genes were detected among three diploid varieties: F. vesca Alpine variety ’Yellow Wonder’ (YW) (Europe); DN1C, a F. vesca clone collected from Northern California; and Fragaria nubicola FRA520, a U.S.D.A. accession collected in Pakistan. Using F2 generations of the crosses DN1C×YW and YW×FRA520 as mapping populations, the six candidate genes were mapped in relation to previously mapped randomly amplified polymorphic DNA (RAPD) markers and morphological markers. The F3H gene was linked without recombination to the c locus in linkage group I, while the other five candidate genes mapped to different linkage groups. These results suggest that the wild-type allele (C) of the c (yellow fruit color) locus encodes an F3H necessary for red fruit color in F. vesca. Received: 28 August 2000 / Accepted: 21 December 2000  相似文献   

5.
Abstrat  The color of mature pepper fruit is determined by the composition of carotenoids. The fruit color of red pepper is genetically determined by three loci, y, c1, and c2. We have been developing a genetic map of hot pepper using RFLP and AFLP markers in the F2 population of an interspecific cross between Capsicum annuum cv TF68 and Capsicum chinense cv Habanero. The color of the ripe fruit of TF68 is red and Habanero is orange. The red color is dominant over orange in the F1 and the locus controlling this character has been marked in our SNU Linkage Group 7. To identify the gene or markers tightly linked to the red/orange locus, several candidate genes involved in the carotenoid biosynthesis pathway, namely FPS, GGPS, PSY, PDS, LCY and CCS, were examined. One of the candidate genes, phytoene synthase, cosegregated completely with fruit color in the F2 population. QTL analysis of the pigment content of F2 individuals quantified by HPLC also indicated that phytoene synthase is the locus responsible for the development of fruit color. The color, pigment content and genetic behavior of Habanero also suggest that phytoene synthase may be responsible for the c2 gene discriminating between red and orange cultivars. Received: 15 March 2000 / Accepted: 16 August 2000  相似文献   

6.
7.
Seed coat color inheritance in Brassica napus was studied in F1, F2, F3 and backcross progenies from crosses of five black seeded varieties/lines to three pure breeding yellow seeded lines. Maternal inheritance was observed for seed coat color in B. napus, but a pollen effect was also found when yellow seeded lines were used as the female parent. Seed coat color segregated from black to dark brown, light brown, dark yellow, light yellow, and yellow. Seed coat color was found to be controlled by three genes, the first two genes were responsible for black/brown seed coat color and the third gene was responsible for dark/light yellow seed coat color in B. napus. All three seed coat color alleles were dominant over yellow color alleles at all three loci. Sequence related amplified polymorphism (SRAP) was used for the development of molecular markers co-segregating with the seed coat color genes. A SRAP marker (SA12BG18388) tightly linked to one of the black/brown seed coat color genes was identified in the F2 and backcross populations. This marker was found to be anchored on linkage group A9/N9 of the A-genome of B. napus. This SRAP marker was converted into sequence-characterized amplification region (SCAR) markers using chromosome-walking technology. A second SRAP marker (SA7BG29245), very close to another black/brown seed coat color gene, was identified from a high density genetic map developed in our laboratory using primer walking from an anchoring marker. The marker was located on linkage group C3/N13 of the C-genome of B. napus. This marker also co-segregated with the black/brown seed coat color gene in B. rapa. Based on the sequence information of the flanking sequences, 24 single nucleotide polymorphisms (SNPs) were identified between the yellow seeded and black/brown seeded lines. SNP detection and genotyping clearly differentiated the black/brown seeded plants from dark/light/yellow-seeded plants and also differentiated between homozygous (Y2Y2) and heterozygous (Y2y2) black/brown seeded plants. A total of 768 SRAP primer pair combinations were screened in dark/light yellow seed coat color plants and a close marker (DC1GA27197) linked to the dark/light yellow seed coat color gene was developed. These three markers linked to the three different yellow seed coat color genes in B. napus can be used to screen for yellow seeded lines in canola/rapeseed breeding programs.  相似文献   

8.
9.
10.
L. Reich  J. Don  R. R. Avtalion 《Genetica》1990,80(3):195-200
The inheritance of the red color was studied in two different varieties of tilapia which are both considered as hybrids of Oreochromis mossambicus. Crosses between red tilapia from the Philippines (PRT) and Sarotherodon galilaeus, or Oreochromis aureus gave a 1:1 ratio of red: normal and crosses between F1 black fish gave only black offspring. On the other hand crosses between the F1 red fish gave a 3:1 ratio of red:black and crosses between F1 red and black offspring gave a 1:1 ratio. These results lead to the conclusion that red color is dominant over the normal black color and controlled by a single autosomal gene (R). A unique phenotype named albino with black eyes was observed among offspring of PRT and a presumed model of inheritance of this trait is proposed. Genetic analysis of a second variety of red tilapia (derived from an unknown origin) showed the following results: crosses between parents and between their F1 offspring consistently gave 100% red fish and crosses between this red tilapia and Oreochromis aureus gave 100% black offspring. The crosses between red and black F1 of these last two crosses gave a 1:1 ratio and crosses carried out between the black F1 offspring gave a 1:3 ratio of red:black. It may be concluded from these results that the black color is dominant in this strain and that this color is controlled by a single autosomal gene (B). The presumed mode of action of the dominant gene (R) as well as of the recessive gene (b) are discussed.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Classical genetic studies have determined that the yellow fruit color in pepper is recessive to red in the locus y. We studied the relation of the y locus with the gene coding for capsanthin-capsorubin synthase (CCS) that synthesizes the red carotenoid pigments in the mature fruit. Cosegregation of y and CCS in populations derived from crosses between plants bearing red×white and red×yellow fruits indicated the correspondence of the two genes. We obtained indications for the occurrence of a deletion in the CCS gene in plants containing the recessive y allele. This deletion did not contain the distal 220 bp of the 3′ end of the gene. We used the CCS gene to determine the genotype of peppers with different fruit colors at the y locus. In BC1 segregants from a red×white cross, the red and peach-fruited progenies had the wild-type allele at the CCS locus, while the orange, yellow and white-fruited progenies had the mutant allele. Screening orange-fruited cultivars with CCS as well as segregation analysis of CCS in an additional red×white cross indicated two possible genotypes of the orange fruit color in this locus. Received: 25 January 1999 / Accepted: 16 August 1999  相似文献   

18.
Porphyra yezoensis Ueda artificial pigmentation mutants, yel (green), fre (red‐orange) and bop (pink), obtained by treatment with /V‐methyl‐/V′‐nitro‐N‐nitrosoguanidine, were genetically analysed. The mutations associated with color phenotypes are recessive because all of the heterozygous conchocelis resembled the wild type color when they were crossed with the wild type (wt). In the reciprocal crosses of yel × wt, both parental colors and eight types of blades appeared in the F1 gametophytic blades from the heterozygous conchocelis. Both colors segregated in the sectored F1 blades in a 1:1 ratio, indicating that the color pheno‐type of yel resulted from a single mutation in the nuclear gene. In the reciprocal crosses of fre × wt, however, four colors and more than 40 types of blades appeared in the F1 blades from the heterozygous conchocelis, indicating that the color phenotype of fre resulted from two mutations in different genes. In the reciprocal crosses of bop×wt, three colors and 12 types of blades were observed in the F1 blades from the heterozygous conchocelis. Both parental colors appeared far more frequently than the third new color. These results indicated that the color phenotype of bop resulted from two closely linked mutations in different genes, and the epistasis occurred in the F1 blades. The mutants, yel, fre and bop, differ from the spontaneous green (C‐O), the red (H‐25) and the violet (V‐O) mutants of P. yezoensis, respectively.  相似文献   

19.
Genetic regulation of body color of mutant strain JBM of Helicoverpa armigera with black body color of pupae and adults was investigated. Reciprocal crosses between JBM and JBW (a wild strain with yellow brown body color of pupae and adults) were used to determine the inheritance characteristics of body color. Analysis of the ratio of phenotype segregation from the F1 generation, F2 generation, F3 generation, BC1 (F1 × JBM) generation and F1 generation of BC1 indicated that the black body color was controlled by one recessive gene.__________From Genetika, Vol. 41, No. 5, 2005, pp. 702–704.Original English Text Copyright © 2005 by Wang Mo, Weihua Ma, Lizhen Chen, Fuxing Zhu, Jianhong Li.This article was submitted by the authors in English.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号