首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The elimination of activated T cells by FAS-mediated signaling is an important immunoregulatory mechanism used to maintain homeostasis and prevent tissue damage. T cell receptor-dependent signals are required to confer sensitivity to FAS-mediated re-stimulation-induced cell death (RICD), however, the nature of these signals is not well understood. In this report, we show, using T cells from CD4-deficient mice reconstituted with a tail-less CD4 transgene, that CD4-dependent signaling events are a critical part of the competency signal required for RICD. This is in part due to defects in FAS receptor signaling complex formation as shown by decreased recruitment of FAS and caspase 8 into lipid rafts following antigen re-stimulation in the absence of CD4-dependent signals. In addition, in the absence of CD4-dependent signals, effector T cells have a selective defect in IL-2 secretion following peptide re-stimulation, while provision of exogenous IL-2 during re-stimulation partially restores susceptibility to RICD. Importantly, IL-2 production and proliferation after primary peptide stimulation is comparable between wild type and CD4-deficient T cells indicating that the requirement for CD4-dependent signaling events for IL-2 production is developmentally regulated and is particularly critical in previously activated effector T cells. In total, our results indicate that CD4 co-receptor dependent signaling events specifically regulate effector T cell survival and function. Further, these data suggest that CD4-dependent signaling events may protect against the decreased IL-2 production and resistance to cell death seen during chronic immune stimulation.  相似文献   

2.
Regulation of activation-induced cell death of mature T-lymphocyte populations   总被引:11,自引:0,他引:11  
Resting mature T lymphocytes are activated when triggered via their antigen-specific T-cell receptor (TCR) to elicit an appropriate immune response. In contrast, preactivated T cells may undergo activation-induced cell death (AICD) in response to the same signals. along with cell death induced by growth factor deprivation, AICD followed by the elimination of useless or potentially harmful cells preserves homeostasis, leads to the termination of cellular immune responses and ensures peripheral tolerance. T-cell apoptosis and AICD are controlled by survival cytokines such as interleukin-2 (IL-2) and by death factors such as tumor necrosis factor (TNF) and CD95 ligand (CD95L). In AICD-sensitive T cells, stimulation upregulates expression of one or several death factors, which in turn engage specific death receptors on the same or a neighboring cell. Death receptors are activated by oligomerization to rapidly assemble a number of adapter proteins and enzymes to result in an irreversible activation of proteases and nucleases that culminates in cell death by apoptosis. Increased knowledge of the molecular mechanisms that regulate AICD of lymphocytes opens new immunotherapeutic perspectives for the treatment of certain autoimmune diseases, and has implications in other areas such as transplantation medicine and AIDS research.  相似文献   

3.
The evolutionary preservation of reactive oxygen species in innate immunity underscores the important roles these constituents play in immune cell activity and as signaling intermediates. In an effort to exploit these pathways to achieve control of aberrant immune activation we demonstrate that modulation of redox status suppresses cell proliferation and production of IL-2, IFN-gamma, TNF-alpha, and IL-17 in two robust CD8 T-cell-dependent in vitro mouse models: (1) response to alloantigen in an mixed leukocyte reaction and (2) CD8 T cell receptor transgenic OT-1 response to cognate peptide (SIINFEKL). To correlate these findings with cytotoxic lymphocyte (CTL) function we performed cytotoxicity assays and found that redox modulation diminishes the ability of alloantigen-specific and antigen-specific OT-1 CTLs to kill their corresponding antigen-expressing target cells. To further examine the mechanisms of redox-mediated repression of CTL target cell lysis, we analyzed the expression of the effector molecules IFN-gamma, perforin, and granzyme B and the degranulation marker CD107a (LAMP-1). In both models, redox modulation reduced the expression of these effector components by at least fivefold. These results demonstrate that redox modulation quells the CD8 T cell response to alloantigen and the T cell receptor transgenic CD8 T cell response to its cognate antigen by inhibiting proliferation, proinflammatory cytokine synthesis, and CTL effector mechanisms.  相似文献   

4.
CD8+ T cells induced by immunization with Plasmodium sporozoites play a major role in protective immunity against parasite infection, inhibiting the development of liver stages. The activation of these T cells is initiated just a few hours after exposure to parasites and progresses rapidly through a tightly regulated program. Effector functions in CD8+ T are detectable as early as 24 h after immunization and this event is followed 24-48 h later by an accelerated expansion of the CD8+ T cell numbers which reaches a peak 4-5 days after priming. Concomitantly with the development of anti-parasite activity, CD8+ T cells acquire a self-regulatory role limiting the magnitude of the CD8+ T cell response. Once activated, CD8+ T cells strongly inhibit the priming of additional naive CD8+ T cells by competing for antigen presenting cells. On days 6-8 after immunization, a sudden contraction of this T cell response occurs due to programmed cell death of 70-80% of the activated cells. After this contraction phase, 15-20 days after priming, activated cells establish memory populations. The development and maintenance of these memory populations strictly depends on the presence of CD4+ T cells and IL-4, and probably also IL-7, IL-15 and IL-2. These cytokines, some of which are produced by CD4+ T cells, provide signals to prevents apoptosis and also induce the differentiation of memory sub-populations, most of which acquire definitive phenotypes 20-30 days after immunization.  相似文献   

5.
Histidine-rich glycoprotein (HRGP) is a plasma and platelet protein with undefined function in vivo. It has been reported to inhibit rosette formation between murine T cells and erythrocytes. We have shown that HRGP binds specifically to human T lymphocytes but not sheep erythrocytes and have demonstrated a 56-kDa HRGP-binding protein on the T cell surface which is distinct from the CD2 sheep erythrocyte receptor. We have now investigated whether HRGP can inhibit human T cell-sheep erythrocyte rosette formation and whether HRGP can modulate T cell activation. HRGP at physiologic concentrations specifically inhibited rosette formation between human T lymphocytes and sheep erythrocytes. HRGP suppressed proliferation of antigen receptor (CD3)-triggered T cells induced by interleukin 2; this suppression was specifically reversed by prior incubation of HRGP with affinity-purified anti-HRGP IgG. Addition of HRGP 12-24 h after CD3 triggering no longer suppressed T cell proliferation, suggesting HRGP suppressed T cell division by interfering with one or more early events in the process of T cell activation. Human serum (containing 100-150 micrograms/ml HRGP) was also capable of suppressing T cell proliferation; serum which had been immunodepleted of HRGP no longer inhibited T cell proliferation. Furthermore, HRGP inhibited interleukin 2 receptor expression on activated T cells, causing decreased T cell interferon-gamma release and altered T cell-dependent inhibition of erythropoiesis. HRGP is thus capable of modulating T cell activation and T cell immunoregulation; HRGP may function as a natural suppressive regulator of human T lymphocyte activation.  相似文献   

6.
Artificial antigen-presenting cells (aAPCs) are an emerging technology to induce therapeutic cellular immunity without the need for autologous antigen-presenting cells (APCs). To fully replace natural APCs, an optimized aAPC must present antigen (signal 1), provide costimulation (signal 2), and release cytokine (signal 3). Here we demonstrate that the spatial and temporal characteristics of paracrine release of IL-2 from biodegradable polymer aAPCs (now termed paAPCs) can significantly alter the balance in the activation and proliferation of CD8+ and CD4+ T cells. Paracrine delivery of IL-2 upon T cell contact with paAPCs induces significant IL-2 accumulation in the synaptic contact region. This accumulation increases CD25 (the inducible IL-2 Rα chain) on responding T cells and increases proliferation of CD8+ T cells in vitro to levels 10 times that observed with equivalent amounts of bulk IL-2. These CD8+ T cell responses critically depend upon close contact of T cells and the paAPCs and require sustained release of low levels of IL-2. The same conditions promote activation-induced cell death in CD4+ T cells. These findings provide insight into the response of T cell subsets to paracrine IL-2.  相似文献   

7.
Glucocorticoid-induced tumor necrosis factor receptor (TNFR) (GITR) family-related gene is a member of the TNFR super family. GITR works as one of the immunoregulatory molecule on CD4(+) regulatory T cells and has an important role on cell survival or cell death in CD4(+) T cells. Little is known about the expression of GITR on human CD8(+) T cells on antigen-specific and non-specific activation. Here, we report that expression of GITR on human CD8(+) T cells on T-cell receptor (TCR) (anti-CD3)-mediated stimulation is dependent on the JNK pathway. The activation of CD8(+) T cells was measured by the expression of IL-2 receptor-α (CD25), GITR and by IFN-γ production upon re-stimulation with anti-CD3 antibody. We studied the signaling pathway of such inducible expression of GITR on CD8(+) T cells. We found that a known JNK-specific inhibitor, SP600125, significantly down-regulates GITR expression on anti-CD3 antibody-mediated activated CD8(+) T cells by limiting JNK phosphorylation. Subsequently, after stimulation of the CD8(+) cells, we tested for the production of IFN-γ by the activated cells following restimulation with the same stimulus. It appears that the expression of GITR on activated human CD8(+) T cells might also be regulated through the JNK pathway when the activation is through TCR stimulation. Therefore, GITR serves as an activation marker on activated CD8(+) cells and interference with JNK phosphorylation, partially or completely, by varying the doses of SP600125 might have implications in CD8(+) cytotoxic T cell response in translational research.  相似文献   

8.
IL-4 suppression of in vivo T cell activation and antibody production   总被引:3,自引:0,他引:3  
Injection of mice with a foreign anti-IgD Ab stimulates B and T cell activation that results in large cytokine and Ab responses. Because most anti-IgD-activated B cells die before they can be stimulated by activated T cells, and because IL-4 prolongs the survival of B cells cultured with anti-Ig, we hypothesized that treatment with IL-4 at the time of anti-IgD Ab injection would decrease B cell death and enhance anti-IgD-induced Ab responses. Instead, IL-4 treatment before or along with anti-IgD Ab suppressed IgE and IgG1 responses, whereas IL-4 injected after anti-IgD enhanced IgE responses. The suppressive effect of early IL-4 treatment on the Ab response to anti-IgD was associated with a rapid, short-lived increase in IFN-gamma gene expression but decreased CD4+ T cell activation and decreased or delayed T cell production of other cytokines. We examined the possibilities that IL-4 stimulation of IFN-gamma production, suppression of IL-1 or IL-2 production, or induction of TNF-alpha or Fas-mediated apoptosis could account for IL-4's suppressive effect. The suppressive effect of IL-4 was not reversed by IL-1, IL-2, or anti-TNF-alpha or anti-IFN-gamma mAb treatment, or mimicked by treatment with anti-IL-2Ralpha (CD25) and anti-IL-2Rbeta (CD122) mAbs. Early IL-4 treatment failed to inhibit anti-IgD-induced Ab production in Fas-defective lpr mice; however, the poor responsiveness of lpr mice to anti-IgD made this result difficult to interpret. These observations indicate that exposure to IL-4, while T cells are first being activated by Ag presentation, can inhibit T cells activation or promote deletion of responding CD4+ T cells.  相似文献   

9.
Expression of CD95 ligand on parenchymal, epithelial, or tumor cells has been suggested to downregulate the immune response and to control lymphocyte activation. Suppression might be mediated by induction of apoptosis or by inhibition of Ca(2+) channels upon CD95 triggering. We, therefore, aimed to employ this model to modify the immune response to an antigen presented to cytotoxic T cells by antigen-presenting MC57 cells. This model would be very useful to specifically downregulate the immune response to autoantigens in autoimmune situations. However, cytotoxic T cell lines tested in the present study were resistant to CD95 ligand expression on antigen-presenting MC57 cells. In addition, coincubation of the lymphocytes with antigen presenting cells failed to block cytotoxicity mediated by the T lymphocytes. We, therefore, conclude that single expression of CD95 ligand on antigen-presenting cells is insufficient to specifically downregulate an immune response by CD8(+-)triggered immune response.  相似文献   

10.
Notch signaling augments T cell responsiveness by enhancing CD25 expression   总被引:9,自引:0,他引:9  
Notch receptors signal through a highly conserved pathway to influence cell fate decisions. Notch1 is required for T lineage commitment; however, a role for Notch signaling has not been clearly defined for the peripheral T cell response. Notch gene expression is induced, and Notch1 is activated in primary CD4(+) T cells following specific peptide-Ag stimulation. Notch activity contributes to the peripheral T cell response, as inhibition of endogenous Notch activation decreases the proliferation of activated T cells in a manner associated with the diminished production of IL-2 and the expression of the high affinity IL-2R (CD25). Conversely, forced expression of a constitutively active Notch1 in primary T cells results in increased surface expression of CD25, and renders these cells more sensitive to both cognate Ag and IL-2, as measured by cell division. These data suggest an important role for Notch signaling during CD4(+) T cell responses, which operates through augmenting a positive feedback loop involving IL-2 and its high affinity receptor.  相似文献   

11.
12.
In a number of countries, whole cell pertussis vaccines (wcP) were replaced by acellular vaccines (aP) due to an improved reactogenicity profile. Pertussis immunization leads to specific antibody production with the help of CD4(+) T cells. In earlier studies in infants and young children, wcP vaccines selectively induced a Th1 dominated immune response, whereas aP vaccines led to a Th2 biased response. To obtain data on Th1 or Th2 dominance of the immune response in adolescents receiving an aP booster immunization after a wcP or aP primary immunization, we analyzed the concentration of Th1 (IL-2, TNF-α, INF-γ) and Th2 (IL-4, IL-5, IL-10) cytokines in supernatants of lymphocyte cultures specifically stimulated with pertussis antigens. We also investigated the presence of cytotoxic T cell responses against the facultative intracellular bacterium Bordetella pertussis by quantifying pertussis-specific CD8(+) T cell activation following the aP booster immunization. Here we show that the adolescent aP booster vaccination predominantly leads to a Th1 immune response based on IFNgamma secretion upon stimulation with pertussis antigen, irrespective of a prior whole cell or acellular primary vaccination. The vaccination also induces an increase in peripheral CD8(+)CD69(+) activated pertussis-specific memory T cells four weeks after vaccination. The Th1 bias of this immune response could play a role for the decreased local reactogenicity of this adolescent aP booster immunization when compared to the preceding childhood acellular pertussis booster. Pertussis-specific CD8(+) memory T cells may contribute to protection against clinical pertussis.  相似文献   

13.
T cell adhesion molecules   总被引:7,自引:0,他引:7  
Cell adhesion or conjugate formation between T lymphocytes and other cells is an important early step in the generation of the immune response. Although the antigen-specific T cell receptor confers antigen recognition and specificity, a number of other molecules expressed on the T cell surface are involved in the regulation of lymphocyte adhesion. T cell molecules that function to strengthen adhesion include lymphocyte function-associated antigen (LFA)-1, CD2, CD4, and CD8. Their ligands have recently been identified. LFA-1 is a member of the integrin family of adhesion receptors and one of its ligands is intercellular adhesion molecule-1 (ICAM-1); a ligand for CD2 is LFA-3; and ligands for CD4 and CD8 appear to be major histocompatibility complex class II and class I molecules, respectively. In addition, T cells express a number of receptors thought to be involved in cell matrix adhesion. The function and significance of these T cell adhesion receptors and their ligands are reviewed.  相似文献   

14.
T cell subpopulations were obtained from F12.5 and B245/270D T cell lines during long-term culture. Two altered F12.5 subpopulations proliferated more intensively than the original clone. These two subpopulations of F12.5 constantly expressed CD25 (interleukin 2 receptor α chain) at a high level and exogenously added interleukin 2 (IL-2) enhanced cell death for one of these subpopulations. However, the original clone expressed CD25 only after activation and IL-2 inhibited cell death of the original clone. On the other hand, the altered B245/270D subpopulation lost the antigen-specific proliferation ability. This altered cell line under the stimulation culture did not express CD25 even after activation, although the original line expressed CD25. However, the expression pattern of CD25on the altered cell line at resting state was induced similar to that of the original one. These results suggest that an expression pattern of CD25 can be changed during long-term cultures, accompanied with alteration in response to proliferation and cell death. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The CD44 inhibitor Lutheran [In(Lu)]-related p80 molecule has recently been shown to be identical to the Hermes-1 lymphocyte homing receptor and to the human Pgp-1 molecule. We have determined the effect of addition of CD44 antibodies to in vitro activation assays of PBMC. CD44 antibodies did not induce PBMC proliferation alone, but markedly enhanced PBMC proliferation induced by a mitogenic CD2 antibody pair or by CD3 antibody. CD44 antibody addition had no effect upon PBMC activation induced by PHA or tetanus toxoid. CD44 antibody enhancement of CD2 antibody-induced T cell activation was specific for mature T cells as thymocytes could not be activated in the presence of combinations of CD2 and CD44 antibodies. CD44 antibody enhancement of CD2-mediated T cell triggering occurred if CD44 antibody was placed either on monocytes or on T cells. In experiments with purified monocyte and T cell suspensions, CD44 antibodies A3D8 and A1G3 augmented CD2-mediated T cell activation by three mechanisms. First, CD44 antibody binding to monocytes induced monocyte IL-1 release, second, CD44 antibodies enhanced the adhesion of T cells and monocytes in CD2 antibody-stimulated cultures, and third, CD44 antibodies augmented T cell IL-2 production in response to CD2 antibodies. Thus, ligand binding to CD44 molecules on T cells and monocytes may regulate numerous events on both cell types that are important for T cell activation. Given that recent data suggest that the CD44 molecule may bind to specific ligands on endothelial cells (vascular addressin) and within the extracellular matrix (collagen, fibronectin), these data raise the possibility that binding of T cells to endothelial cells or extracellular matrix proteins may induce or up-regulate T cell activation in inflammatory sites.  相似文献   

16.
The elimination of activated T cells is important to maintain homeostasis and avoid immunopathology. CD95 (Fas/APO-1) has been identified as a death mediator for activated T cells in vitro but the function of CD95 in death of mature T cells in vivo is still controversial. Here we show that triggering of the costimulatory TNF receptor family member CD27 sensitized T cells for CD95-induced apoptosis. CD95-deficient (lpr/lpr) T cells massively expanded and differentiated into IFN-gamma-secreting effector cells in transgenic mice that constitutively express the CD27 ligand, CD70. Concomitantly, CD95-deficient CD70 transgenic mice became moribund by 4 wk of age with severe liver pathology and bone marrow failure. These findings establish that CD95 is a critical regulator of effector T cell homeostasis in chronic immune activation.  相似文献   

17.
The nature of inflammatory signals determines the outcome of T cell responses. However, little is known about how inflammatory cytokines provided to human CD8 T cells during activation affects their susceptibility to post-activation cell death. We have examined and compared the effects of the inflammatory cytokine IL-12, as well as the combination of IL-1, IL-6, and IL-23 (IL-1/6/23) on the susceptibility of primary human CD8 T cells to post-activation cell death. Human CD8 T cells activated in the presence of IL-1/6/23 underwent significantly less cell death after activation as compared with those activated in IL-12. This was due to reduced susceptibility to Fas-mediated activation-induced cell death (AICD). Mechanistically, the reduced level of cell death in CD8 T cells activated in IL-1/6/23 was a result of a low level of FasL expression and high level of c-FLIP(S) expression. When the effect of IL-1, IL-6, and IL-23 individually was examined, IL-1 or IL-6 alone was sufficient to inhibit CD8 T cell death that occurs after activation in IL-12. IL-1, but not IL-6, inhibited expression of FasL, whereas IL-6, but not IL-1, increased c-FLIP(S) expression. Our findings show that the presence of IL-1 and/or IL-6 during activation of human CD8 T cells attenuates Fas-mediated AICD, whereas IL-12 increases the susceptibility of activated CD8 T cells to this form of cell death.  相似文献   

18.
Phenotypic changes in CD4(+) T cells undergoing antigen-dependent activation were compared in vivo and in vitro. The most obvious difference was in expression of CD25, the alpha chain of the high affinity receptor for IL-2. High level expression of CD25 in vivo is restricted to a small fraction of the cells at the leading edge of the cell division profile, whereas all activated cells express high levels of CD25 in cultures responding to antigen. Because IL-2 is known to upregulate expression of CD25 in preactivated T cells, this suggests a difference in IL-2 exposure in the two responses. A number of other markers, including CD54, show a similar difference in the pattern of expression in vivo and in vitro. Using 6-colour flow cytometry, it was demonstrated that the small percentage of cells expressing CD25 in vivo coexpresses a very high level of a number of other activation markers, including CD38, CD44 and Ly-6A/E, suggesting that these may also be upregulated by autocrine IL-2.  相似文献   

19.
20.
We have shown previously that T cells activated by optimal TCR and CD28 ligation exhibit marked proliferative heterogeneity, and approximately 40% of these activated cells fail entirely to participate in clonal expansion. To address how prior cell division influences the subsequent function of primary T cells at the single cell level, primary CD4+ T cells were subjected to polyclonal stimulation, sorted based on the number of cell divisions they had undergone, and restimulated by ligation of TCR/CD28. We find that individual CD4+ T cells exhibit distinct secondary response patterns that depend upon their prior division history, such that cells that undergo more rounds of division show incrementally greater IL-2 production and proliferation in response to restimulation. CD4+ T cells that fail to divide after activation exist in a profoundly hyporesponsive state that is refractory to both TCR/CD28-mediated and IL-2R-mediated proliferative signals. We find that this anergic state is associated with defects in both TCR-coupled activation of the p42/44 mitogen-activated protein kinase (extracellular signal-related kinase 1/2) and IL-2-mediated down-regulation of the cell cycle inhibitor p27kip1. However, these defects are selective, as TCR-mediated intracellular calcium flux and IL-2R-coupled STAT5 activation remain intact in these cells. Therefore, the process of cell division or cell cycle progression plays an integral role in anergy avoidance in primary T cells, and may represent a driving force in the formation of the effector/memory T cell pool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号