首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Martín MP  Lado C  Johansen S 《Mycologia》2003,95(3):474-479
Four new primers were designed, based on comparison of Physarum polycephalum sequences retrieved from Genbank (primers PHYS-5 and PHYS-4) and our own sequences (primers PHYS-3 and PHYS-2), to amplify the ITS regions of rDNA, including the 5.8S gene segment from Lamproderma species. Sequencing analysis shows that Lamproderma contains ITS1-5.8S-ITS2 regions of approximately 900 bp, which is similar in size to most eukaryotes. However, the corresponding region in another common myxomycete, Fuligo septica, is more than 2000 bp due to the presence of large direct-repeat motifs in ITS1. Myxomycete rDNA ITS regions are interesting both as phylogenetic markers in taxonomic studies and as model sequences for molecular evolution.  相似文献   

2.
3.
运用PCR扩增产物直接测序的方法对云南、安徽的乌头及其近缘种植物的ITS区碱基序列测定。表明核糖体DNA中ITS区的完整序列(包括ITS1,ITS2和5.8s),4种乌头属植物的ITS1序列长度为249bp,云南鸟头和安徽乌头及黄山鸟头ITS2序列长度为189bp,赣皖乌头ITS2序列长度为217bp。运用Mega2软件进行系统分析得到系统进化树。ITS序列特征是乌头鉴别的有效分子标记。  相似文献   

4.
Extremely long PCR fragments were generated by PCR amplification of ITS and 5.8S rDNA from Cochlodinium polykrikoides against other dinoflagellates. These patterns were consistent among geographically different isolates of C. polykrikoies. DNA sequencing reactions revealed that the PCR products were 1,166 bp in length and consisted of 813 bp of ITS1, 160 bp of 5.8S rDNA and 193 bp of ITS2. Thus, the long length was caused mainly by the long ITS1 sequence. Cryptically, the ITS1 contained a tract of 101 bp that occurs six times in tandem. The six repeated elements had identical nucleotide sequences. ITS1, therefore, separated three distinct regions: the 5' end (122 bp), the six parallel repeats (606 bp), and the 3' region (85 bp). Interestingly, both the single and six-repeat sequences should be palindrome-like sequences. In inferred secondary structures, both repeat sequences formed a long helical structure. This is the first reported discovery of comparatively long internal repeats in the ITS1 of dinoflagellates.  相似文献   

5.
The nucleotide sequences of partial 18S, complete internal transcribed spacer region 1 (ITS1), complete 5.8S, complete ITS2 and partial 28S of ribosomal DNA (rDNA) and cytochrome c oxidase subunit 1 of mitochondrial DNA (MCOI) from five species of gnathostomes (G. spinigerum, G. doloresi, G. nipponicum, G. hispidum and G. binucleatum with the former four species being distributed in Japan and Asia) that cause human gnathostomiasis were compared by direct polymerase chain reaction cycle-sequencing. The nucleotide sequences of each region of the18S (613 bp), 5.8S (158 bp) and 28S (598 bp) rDNA from the five species were almost identical. The ITS1 region was different in length for the five species. The nucleotide sequences of each region of ITS2 and partial MCO1 regions were different among the five species. Therefore, these two regions can be used as genetic markers for identification of worms.  相似文献   

6.
rDNA序列中的ITS作为DNA barcoding广泛应用于真菌的系统发育与物种辅助鉴定,IGS被认为可以用于种内水平不同菌株的鉴别。食用菌中还没有完整的rDNA序列的报道。本研究采用二代和三代测序技术分别对金针菇单核菌株“6-3”进行测序,用二代测序的数据对三代测序组装得到的基因组序列进行修正,得到一个在基因完整性、连续性和准确性均较好的基因组序列,对比Fibroporia vaillantii rDNA序列,获得金针菇完整的rDNA序列。金针菇rDNA序列结构分析表明,它有8个rDNA转录单元,长度均为5 903bp,有9个基因间隔区,其长度有较大差异,3 909-4 566bp。rDNA转录单元中,各元件的序列长度分别为:18S rDNA 1 796bp、ITS1 234bp、5.8S rDNA 173bp、ITS2 291bp、28S rDNA 3 410bp。基因间间隔区中,IGS1 1 351-1 399bp、5S rDNA 124bp、IGS2 2 435-3 092bp。金针菇的5S、5.8S、18S、28S rDNA序列准确性得到转录组数据的验证,也得到系统发育分析结果的支持。多序列比对发现,不同拷贝的基因间间隔区序列(IGS1和IGS2)存在丰富的多态性,多态性来源于SNP、InDel和TRS(串联重复序列),而TRS来源于重复单元的类型和数量。9个基因间间隔区之间,IGS1只有少量的SNP和InDel,IGS2不仅有SNP和InDel,还有TRS。本研究结果提示,在应用IGS进行种内水平不同菌株之间的鉴别时,需要选取不同拷贝之间的保守IGS序列。  相似文献   

7.
以改进的CTAB法对何首乌总基因组DNA进行提取,采用通用引物对不同来源的何首乌rDNA ITS序列进行PCR扩增、测序和序列分析.结果表明,何首乌rDNA完全序列片段长度共约652 bp,其中ITS1的长度为202 bp,5.8S的长度为161 bp,ITS2长度为232 bp,与其近缘种ITS序列间存在明显差异.其rDNA ITS序列在分子水平上为鉴别何首乌提供了参考依据.  相似文献   

8.
rDNA序列中的ITS作为DNA barcode广泛应用于真菌的系统发育与物种辅助鉴定,IGS被认为可以用于种内水平不同菌株的鉴别。有关食用菌rDNA序列的报道较少。本研究对毛木耳Auricularia cornea单核菌株B02进行三代测序与组装,然后用二代测序数据进行校正,得到一个组装效果较好的基因组序列。比对Fibroporia vaillantiir的rDNA序列获得毛木耳rDNA重复单元的完整序列,每个重复单元包含ETS、18S rDNA、ITS1、5.8S rDNA、ITS2、28S rDNA、IGS1、5S rDNA和IGS2,长度分别为398bp、1 790bp、156bp、156bp、206bp、3 432bp、2 247bp、121bp和2 135bp,总长度10 641bp,毛木耳rDNA有310个串联重复单元,转录组和系统发育分析均支持这一结果。与其他已报道的食用菌不同,毛木耳的IGS1、IGS2序列高度保守,其中IGS1的1 400-2 200bp区域在各拷贝之间没有多态性、而在品种之间有较高频率的SNP,这一片段序列有望用于品种鉴别研究。  相似文献   

9.
陈灼娟 《广西植物》2017,37(11):1447-1454
对不同栽培区的25种普通枇杷品种以及7种枇杷属野生种的ITS序列进行扩增并测序,采用邻接法和最大简约法进行系统发育树的构建并对枇杷属内不同种间的遗传关系进行了分析。结果表明:枇杷属植物ITS序列ITS1+5.8S rDNA+ITS2总长度为592 bp或594 bp,长度变化发生在ITS2。所有样本的ITS1和5.8S rDNA长度一样,都是223 bp和168 bp;而ITS2为201 bp或203 bp。5种枇杷属野生种的ITS序列长度为594 bp,包括栎叶枇杷、大渡河枇杷、南亚枇杷、南亚枇杷窄叶变种和大瑶山枇杷;其余2种枇杷属野生种(麻栗坡枇杷、小叶枇杷)和普通枇杷栽培种的ITS序列长度都为592 bp。所有样本ITS序列的GC含量为64.2%~64.5%,其中ITS1为64.1%~65.5%,ITS2为68.1%~72.6%。对所有样本的ITS序列比对产生44个可变位点,其中38个为简约信息位点,其中11个位于ITS1,5个位于5.8S rDNA,22个位于ITS2。最大的种间序列差异为7.7%,最小的种间差异发生在麻栗坡枇杷和小叶枇杷之间,仅为0.2%。普通枇杷种内的ITS序列差异很低,25种普通枇杷栽培种之间的序列差异为0~1.5%。所研究的枇杷属植物可分为3个分支。分支Ⅰ包括所有普通枇杷品种,分支Ⅱ包含5种野生枇杷种,包括栎叶枇杷、大渡河枇杷、南亚枇杷、南亚枇杷窄叶变种和大瑶山枇杷;分支Ⅲ由2个野生枇杷种(麻栗坡枇杷、小叶枇杷)组成。该研究结果表明ITS序列对枇杷种间鉴定和系统发育分析具有一定意义,但对普通枇杷栽培种间的鉴定作用不大。  相似文献   

10.
利用PCR法对青梅ITS1、5.8S、ITS2序列扩增后克隆测序,用软件DNAMAN和MEGA3.1分析测序结果,研究18个福建青梅样品的核糖体ITS碱基序列差异。获得青梅18个样品rDNA中的ITS和5.8S完全序列,ITS1、5.8S和ITS2序列长度分别为223~224bp、164bp和241~246bp,5.8S较为保守。根据测序结果,以UPGMA法建立系统发生树,从分子水平说明18个样品间的变异程度,并将福建青梅差异较大的14条rDNA ITS序列登录GenBank,获得登录号:EF523482-EF523493、EF529435和EF529436。  相似文献   

11.
We analyzed sequences of the D1D2 domain of the 26S ribosomal RNA gene (26S rDNA sequence), and the region of internal transcribed spacer 1, 5.8S ribosomal RNA gene and internal transcribed spacer 2 (ITS sequence) of the miso and soy sauce fermentation yeasts, Candida etchellsii and Candida versatilis, in order to evaluate the usefulness of this sequence analysis for identification and typing of these two species. In the 26S rDNA sequence method, the numbers of base substitutions among C. etchellsii strains were up to 2 in 482 bp (99.6% similarity), and they were divided into three types (types A, B, and C). Those of C. versatilis strains were also up to 2 in 521 bp (99.6% similarity) and they were divided into three types (types 1, 2, and 3). In the ITS sequence method, those of C. etchellsii strains were zero in 433 bp (type a, 100% similarity). Those of C. versatilis were 5 in 409 bp (98.8% similarity), divided into 4 types (types I, II, III and IV). It was found that molecular methods based on the sequences of the 26S rDNA D1D2 domain and the ITS region were rapid and precise compared with the physiological method for the identification and typing of these two species.  相似文献   

12.
In the present study, the entire first and second internal transcribed spacer (ITS-1 and ITS-2) regions of nuclear ribosomal DNA (rDNA) of Haemaphysalis longicornis from China were amplified by polymerase chain reaction. The 45 representative amplicons were sequenced, and sequence variation in the ITS was examined. The ITS sequences of H. longicornis were 3644 bp in size, including the part of 18S rDNA, 28S rDNA sequences and the complete ITS-1, 5.8S rDNA and ITS-2 sequences. Sequence analysis revealed that the ITS-1, 5.8S rDNA and ITS-2 of this hard tick were 1582, 152, and 1610 bp in size, respectively. The intra-specific sequence variations of ITS-1 and ITS-2 within H. longicornis were 0–2 and 0–2.2%; however, the inter-specific sequence differences among members of the genus Haemaphysalis were significantly higher, being 35.1–55.2 and 37–52% for ITS-1 and ITS-2, respectively. The molecular approach employed in this study provides the foundation for further studies of the genetic variation of H. longicornis from different hosts and geographical origins in China.  相似文献   

13.
We previously reported the occurrence of genetically‐diverse symbiotic dinoflagellates (zooxanthellae) within and between 7 giant clam species (Tridacnidae) from the Philippines based on the algal isolates' allozyme and random amplified polymorphic DNA (RAPD) patterns. We also reported that these isolates all belong to clade A of the Symbiodinium phylogeny with identical 18S rDNA sequences. Here we extend the genetic characterization of Symbiodinium isolates from giant clams and propose that they are conspecific. We used the combined DNA sequences of the internal transcribed spacer (ITS)1, 5.8S rDNA, and ITS2 regions (rDNA‐ITS region) because the ITS1 and ITS2 regions evolve faster than 18S rDNA and have been shown to be useful in distinguishing strains of other dinoflagellates. DGGE of the most variable segment of the rDNA‐ITS region, ITS1, from clonal representatives of clades A, B, and C showed minimal intragenomic variation. The rDNA‐ITS region shows similar phylogenetic relationships between Symbiodinium isolates from symbiotic bivalves and some cnidarians as does 18S rDNA, and that there are not many different clade A species or strains among cultured zooxanthellae (CZ) from giant clams. The CZ from giant clams had virtually identical sequences, with only a single nucleotide difference in the ITS2 region separating two groups of isolates. These data suggest that there is one CZ species and perhaps two CZ strains, each CZ strain containing individuals that have diverse allozyme and RAPD genotypes. The CZ isolated from giant clams from different areas in the Philippines (21 isolates, 7 clam species), the Australian Great Barrier Reef (1 isolate, 1 clam species), Palau (8 isolates, 7 clam species), and Okinawa, Japan (1 isolate, 1 clam species) shared the same rDNA‐ITS sequences. Furthermore, analysis of fresh isolates from giant clams collected from these geographical areas shows that these bivalves also host indistinguishable clade C symbionts. These data demonstrate that conspecific Symbiodinium genotypes, particularly clade A symbionts, are distributed in giant clams throughout the Indo‐Pacific.  相似文献   

14.
Summary The nucleotide sequence of a spacer region between rice 17S and 25S rRNA genes (rDNAs) has been determined. The coding regions for the mature 17S, 5.8S and 25S rRNAs were identified by sequencing terminal regions of these rRNAs. The first internal transcribed spacer (ITS1), between 17S and 5.8S rDNAs, is 194–195 bp long. The second internal transcribed spacer (ITS2), between 5.8S and 25S rDNAs, is 233 bp long. Both spacers are very rich in G+C, 72.7% for ITS1 and 77.3% for ITS2. The 5.8S rDNA is 163–164 bp long and similar in primary and secondary structures to other eukaryotic 5.8S rDNAs. The 5.8S rDNA is capable of interacting with the 5′ terminal region of 25S rDNA.  相似文献   

15.
本研究测定了米尔顿姬小蜂Anselmella miltoni Girault的rDNA ITS1和ITS2序列,以探讨其分子鉴定方法。米尔顿姬小蜂的ITS1和ITS2侧翼区(18S和5.8S)序列相对稳定,ITS1和ITS2序列存在种间差异。根据18S rDNA部分序列,利用DNAMAN的Maximum Likelihood方法构建了与膜翅目其它科的系统发育树。根据米尔顿姬小蜂ITS1和ITS2序列设计了特异性引物,应用特异性引物对样品进行了PCR扩增,扩增效果理想,采用上述特异性引物可从单头米尔顿姬小蜂稳定地扩增出明显的目的DNA条带。因此,可以采用ITS1和ITS2区的特异性对米尔顿姬小蜂进行快速的分子鉴定。  相似文献   

16.
Nuclear rRNA genes (rDNA) in angiosperms are arranged in long tandem repeat ing units, much like those of other higher eukaryotes. Owing to rapid concerted evolution, the repeat units have homogenized or nearly so in most species. The internal transcribed spacer (ITS) of nuclear rDNA is composed of ITS1 and ITS2, which are seperated by 5.8S rDNA. The two spacers, ITS1 (187~298 bp) and ITS2 (187~252 bp), can be readily amplified by PCR and sequenced using universal primers. The sequences contain many vari able sites and potential informative sites among related species, and have been proven to be a useful molecular marker in phylogenetic and evolutionary studies of many angiosperm taxa. It can be used not only in classification and phylogenetic inferences at the levels of family, subfamily, tribe, genus and section, but also in reconstruction of reticulate evolution and de tection of the speciation via hybridization and polyploidization. But this region may not be useful for resolving phylogenetic relationships among families or taxa of higher hierarchy ow- ing to the rapid variation of the ITS sequences.  相似文献   

17.
18.
For the cloning of nuclear ribosomal DNA (rDNA) fromBupleurum euphorbioides (Apiaceae), ten clones were screened by DNA-DNA hybridization method. Among them, two clones were strongly hybridized with a heterologous probe of rice rDNA and with an autologous probe of an internally-transcribed region ofB. euphorbioides amplified by PCR. We sequenced both ends of the two genomic clones aligned with a known sequence of rDNA. ITS2 sequences of the two clones showed 98% and 83% homology with the ITS2 sequence ofB. euphorbioides. Our clones showed 1 bp and 3 bp nucleotide substitutions in the 25S and intergenic spacer regions, respectively, and the ITS1 and 18S regions were both missing. Restriction enzyme sites and the orientation of both clones were analyzed for physical mapping purposes. Apart from the length difference between the two clones, we found restriction site variations in the 25S and intergenic spacer regions.  相似文献   

19.
In the present study, samples representing Orientobilharzia turkestanicum from cattle, sheep, cashmere goat and goat in Heilongjiang Province, China, were characterized and grouped genetically by sequences of internal transcribed spacer (ITS, including ITS-1 and ITS2) and 28S ribosomal DNA (28S rDNA). The ITS and 28S rDNA were amplified by polymerase chain reaction (PCR) and then sequenced and compared with that of other members of the Schistosomatidae available in GenBank™, and phylogenetic relationships between them were re-constructed using the neighbor-joining and maximum parsimony methods. The lengths of ITS-1, ITS-2 and 28S rDNA sequences for all O. turkestanicum samples from different hosts were 384 bp, 331 bp and 1304 bp, respectively. While the ITS-1 sequences of O. turkestanicum from each of the four different hosts, and ITS-2 of O. turkestanicum from cattle, sheep and cashmere goat were identical, respectively, the ITS-2 of O. turkestanicum from goat differed from that of O. turkestanicum from cattle, sheep and cashmere goat by one nucleotide. The 28S rDNA sequences of O. turkestanicum from sheep and cashmere goat were identical, but differed from that of O. turkestanicum from cattle and goat by two nucleotides, with the latter two also having identical 28S rDNA sequence. Phylogenetic analyses based on the combined sequences of the ITS-1 and ITS-2, or the 28S rDNA sequences placed O. turkestanicum within the genus Schistosoma, and it was phylogenetically closer to the African schistosome group than to the Asian schistosome group. These results should have implications for studying the origin and evolution of O. turkestanicum and other members of the Schistosomatidae.  相似文献   

20.
Endosymbiotic green algae of Japanese Paramecium bursaria were phylogenetically analyzed based on DNA sequences from the ribosomal DNA operon (18S rDNA, ITS1, 5.8S rDNA, and ITS2). Phylogenetic trees constructed using 18S rDNA sequences showed that the symbionts belong to the Chlorella sensu stricto (Trebouxiophyceae) group. They are genetically closer to the C. vulgaris Beijerinck group than to C. kessleri Fott et Nováková as proposed previously. Branching order in C. vulgaris group was unresolved in 18S rDNA trees. Compared heterogeneities of 18S rDNA, ITS1, 5.8S r, and ITS2 among symbionts and two Chlorella species, indicated that the ITS2 region (and probably also ITS1) is better able to resolve phylogenetic problems in such closely related taxa. All six symbiotic sequences obtained here (approximately 4000-bp sequences of 18S rDNA, ITS1, 5.8S rDNA, and ITS2) were completely identical in each, strongly suggesting a common origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号