首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Maternal diabetes has been demonstrated to adversely affect preimplantation embryo development and pregnancy outcomes. Emerging evidence has implicated that these effects are associated with compromised oocyte competence. Several developmental defects during oocyte maturation in diabetic mice have been reported over past decades. Most recently, we further identified the structural, spatial and metabolic dysfunction of mitochondria in oocytes from diabetic mice, suggesting the impaired oocyte quality. These defects in the oocyte may be maternally transmitted to the embryo and then manifested later as developmental abnormalities in preimplantation embryo, congenital malformations, and even metabolic disease in the offspring. In this paper, we briefly review the effects of maternal diabetes on oocyte quality, with a particular emphasis on the mitochondrial dysfunction. The possible connection between dysfunctional oocyte mitochondria and reproductive failure of diabetic females, and the mechanism(s) by which maternal diabetes exerts its effects on the oocyte are also discussed.  相似文献   

2.
Promoting lipid utilization with l-carnitine to improve oocyte quality   总被引:1,自引:0,他引:1  
Successful embryo and fetal development is dependent on the quality of the oocyte from which it was derived. Several studies to date have demonstrated the link between appropriate metabolism and sufficient ATP production with oocyte quality and preimplantation embryo development. Metabolism of fatty acids for the purpose of synthesizing ATP occurs within mitochondria via β-oxidation and entry of fatty acids into this organelle is the rate-limiting step in this process. Transport of activated fatty acids into mitochondria is catalyzed by carnitine palmitoyl transferase-I (CPTI) which also requires the metabolite carnitine. Once inside the mitochondrial matrix, fatty acids are broken down into acetyl CoA molecules which are further metabolized via the TCA cycle and electron transport chain to produce ATP. The potential to improve oocyte quality by modulating fatty acid metabolism and β-oxidation with carnitine in culture media formulations or via dietary supplementation has received little attention. This review summarizes studies to date investigating the developmental importance of β-oxidation through the use of metabolic inhibitors and whether regulation by carnitine, in vitro or in vivo, has beneficial effects on oocyte and embryo development. Overall, there is little evidence to date that dietary carnitine can improve oocyte quality or female fertility; however inclusion of l-carnitine to in vitro oocyte maturation and embryo growth media improves embryo outcomes, most likely by supplying the oocyte and embryo with an essential co-factor required to utilize fatty acids.  相似文献   

3.
Cell surface antigenic changes associated with differentiation of the rat oocyte and early embryo have been demonstrated with a monoclonal antibody (anti-OA-1). Antigen is first detectable coincident with initiation of oocyte growth, is a constant feature of all growing oocytes and displays a redistribution during meiotic maturation. Following fertilization, antigen is detectable on the surface of the embryo through the four-cell stage. This first monospecific marker for the rat oocyte and embryo should prove useful in probing structure/function relationships in oocyte growth, meiotic maturation fertilization, and/or early embryonic development.  相似文献   

4.
5.
卵母细胞成熟和受精是动物生殖过程的核心环节。细胞骨架是遍布于卵母细胞胞质中的一种复杂的蛋白质纤维网络,研究表明,卵母细胞成熟和受精过程中伴随着广泛的胞质骨架重组。哺乳动物卵母细胞和早期胚胎中细胞骨架具有其独特的分布和功能,使卵母细胞和胚胎呈现出不同的变化特点。微丝、微管的分布变化与卵母细胞成熟和受精中遗传物质的重组密切相关。近年来,对哺乳动物不同物种间卵母细胞和胚胎中细胞骨架成分的研究取得了很大的进展,结合这些研究成果,对哺乳动物卵母细胞成熟和受精过程中细胞骨架的重组、分布和作用进行了介绍。同时,对多种信号转导途径参与卵母细胞成熟和受精中细胞骨架系统的调控也作了探讨。  相似文献   

6.
ICSI and embryo biopsy are routine methods used for assisted reproduction. However, their impact on embryo quality is still poor studied. Moreover, oocyte size is also a crucial factor for blastocyst production. In this study effect of oocyte size, ICSI and embryo biopsy was assessed in terms of incidence of apoptosis and blastocyst development. IVM-oocytes from prepubertal goats were fertilized by ICSI or IVF. Embryos obtained were divided depending on oocyte size, biopsied at day-4 post-insemination/injection and cultured for additional 4-5 days. Apoptotic cell number was assessed by TUNEL staining in day-4 embryos and blastocysts obtained. In each diameter group, ICSI did not affect embryo development, blastocyst cell number and embryo apoptotic grade in comparison to IVF. Embryo biopsy did not affect blastocyst rate and apoptotic cell number, but decreased blastocyst cell number (P=0.0018). Moreover, there was a negative relationship between blastocyst cell number and apoptotic grade (P<0.05). In conclusion, ICSI and embryo biopsy do not have negative effect on embryo quality and development. However, oocyte size has a positive relationship on blastocyst yield and quality.  相似文献   

7.
Beauvericin (BEA) is a mycotoxin produced by Beauveria bassiana and Fusarium species recently reported as toxic on porcine oocyte maturation and embryo development. The aim of this study was to assess, in the juvenile sheep, whether its effects are due to alterations of oocyte and/or embryo bioenergetic/oxidative status. Cumulus‐oocyte‐complexes (COCs) were exposed to BEA during in vitro maturation (IVM), evaluated for cumulus cell (CC) apoptosis, oocyte maturation and bioenergetic/oxidative status or subjected to in vitro fertilization (IVF) and embryo culture (IVEC). Oocyte nuclear maturation and embryo development were assessed after Hoechst staining and CC apoptosis was analysed by terminal deoxynucleotidyl transferase‐mediated dUTP nick‐End labeling assay and chromatin morphology after Hoechst staining by epifluorescence microscopy. Oocyte and blastocyst bioenergetic/oxidative status were assessed by confocal microscopy after mitochondria and reactive oxygen species labelling with specific probes. BEA showed various toxic effects, that is, short‐term effects on somatic and germinal compartment of the COC (CCs and the oocyte) and long‐term carry‐over effects on developing embryos. In detail, at 5 µM, it significantly reduced oocyte maturation and immature oocytes showed increased late‐stage (Type C) CC apoptosis and DNA fragmentation while matured oocytes showed unaffected CC viability but abnormal mitochondrial distribution patterns. At lower tested concentrations (3–0.5 µM), BEA did not affect oocyte maturation, but matured oocytes showed reduced mitochondrial activity. At low concentrations, BEA impaired embryo developmental capacity and blastocyst quality after IVF and IVEC. In conclusion, in the juvenile sheep, COC exposure to BEA induces CC apoptosis and oocyte mitochondrial dysfunction with negative impact on embryo development.  相似文献   

8.
The transition from oocyte to embryo is among the most enthralling events in developmental biology. Recent studies of this transition in the nematode Caenorhabditis elegans have revealed how conserved kinases administer the destruction of key oocyte meiotic regulators to create an embryo.  相似文献   

9.
Although bovine embryos are routinely produced in vitro for several decades, there still exists a critical need for techniques to accurately predict the oocyte's developmental competence in a noninvasive way, before the in vitro embryo production procedure. In this review, several noninvasive methods to evaluate oocyte quality are discussed, such as morphological assessment of the cumulus oocyte complex and the use of brilliant cresyl blue. Because an individual oocyte and embryo culture method can possibly generate additional insights into the factors that determine oocyte quality, the second part of this review summarizes the state of the art of bovine single oocyte culture. The optimization of individual in vitro embryo production can obviously accelerate the quest for better noninvasive oocyte quality markers, because more information about the oocyte's requirements and intrinsic quality will be revealed. Although each step of in vitro culture has to be re-examined in light of the hampered production of single embryos, the reward at the end will be substantial. Individual scored oocytes will be traceable along the in vitro embryo production procedure and the final blastocyst outcome can be linked to the original oocyte quality and follicular environment without the bias caused by simultaneously developing embryos.  相似文献   

10.
Hyaluronic acid (HA), an important component of the extracellular matrix, plays a crucial role for cumulus cell expansion. Genes and proteins involved in HA synthesis and its receptor CD44 are expressed in cumulus oocyte complexes (COCs) in different animal species and increase during maturation. Hyaluronidase enzymes (Hyal) degrade HA into smaller biologically active HA fragments. To investigate the effects of the molecular size and concentration of HA on oocyte maturation and further embryo development, bovine oocytes were matured in vitro in the presence or absence of HA, Hyal-2 or 4-methylumbelliferone (4-MU); an HA synthesis inhibitor. The rates of oocyte nuclear maturation to metaphase II stage and development of embryos to blastocyst stage and blastocyst quality were recorded. Hyal-2 inhibited cumulus cell expansion without affecting oocyte maturation and further embryo development. Whereas, 4-MU at 1 mm reduced cumulus cell expansion, oocyte maturation rate and further embryo development; an effect which was partially abrogated by exogenous HA supplementation. These data suggest that HA production by cumulus cells during maturation is essential not only for cumulus cell expansion, but also for oocyte maturation and further embryo development. This effect is not affected by HA-degradation by Hyal-2.  相似文献   

11.
12.
In human IVF procedures objective and reliable biomarkers of oocyte and embryo quality are needed in order to increase the use of single embryo transfer (SET) and thus prevent multiple pregnancies. During folliculogenesis there is an intense bi-directional communication between oocyte and follicular cells. For this reason gene expression profile of follicular cells could be an important indicator and biomarker of oocyte and embryo quality. The objective of this study was to identify gene expression signature(s) in human granulosa (GC) and cumulus (CC) cells predictive of successful embryo implantation and oocyte fertilization. Forty-one patients were included in the study and individual GC and CC samples were collected; oocytes were cultivated separately, allowing a correlation with IVF outcome and elective SET was performed. Gene expression analysis was performed using microarrays, followed by a quantitative real-time PCR validation. After statistical analysis of microarray data, there were no significantly differentially expressed genes (FDR<0,05) between non-fertilized and fertilized oocytes and non-implanted and implanted embryos in either of the cell type. Furthermore, the results of quantitative real-time PCR were in consent with microarray data as there were no significant differences in gene expression of genes selected for validation. In conclusion, we did not find biomarkers for prediction of oocyte fertilization and embryo implantation in IVF procedures in the present study.  相似文献   

13.
14.

Background  

Despite the clinical outcomes of ovarian stimulation with either GnRH-agonist or GnRH-antagonist analogues for in vitro fertilization (IVF) being well analysed, the effect of analogues on oocyte/embryo quality and embryo development is still not known in detail. The aim of this case-control study was to compare the efficacy of a multiple-dose GnRH antagonist protocol with that of the GnRH agonist long protocol with a view to oocyte and embryo quality, embryo development and IVF treatment outcome.  相似文献   

15.
The importance of oocyte quality cannot be overstated, because it impacts all subsequent events during development of the embryo, the fetus and even the resulting offspring. Oocyte metabolism plays a critical role in supporting developmental competence via multiple mechanisms. It is beginning to be understood that metabolic pathways not only affect cytoplasmic maturation but may control nuclear maturation as well. A complete understanding of the precise roles that metabolism plays in determining oocyte quality is crucial for developing efficient in vitro maturation systems to support acquisition of oocyte competence. To date, this pursuit has not been entirely successful. Work in our laboratory on porcine oocyte metabolism has elucidated some of the intricate control mechanisms at work within the oocyte, not only for energy production, but also encompassing progression of nuclear maturation, mitochondrial activity and distribution, and oxidative and ionic stresses. We hypothesize that by utilizing oocyte metabolic data, we can develop more appropriate in vitro maturation systems that result in increased oocyte and embryo developmental competence.  相似文献   

16.
17.
18.
Analysis of oocyte physiology to improve cryopreservation procedures   总被引:4,自引:0,他引:4  
In contrast to the preimplantation mammalian embryo, it has been notoriously difficult to cryopreserve the metaphase II oocyte. The ability to store oocytes successfully at -196 degrees C has numerous practical and financial advantages, together with ethical considerations, and will positively impact animal breeding programs and assisted conception in the human. Differences in membrane permeability and in physiology are two main reasons why successful oocyte cryopreservation has remained elusive. It is proposed, therefore, that rather than relying on technologies already established for the preimplantation embryo, the development of cryopreservation techniques suitable for the mammalian oocyte needs to take into account the idiosyncratic physiology of this cell. Analysis of intracellular calcium, for example, has revealed that exposure to conventional permeating cryoprotectants, such as propanediol, ethylene glycol and DMSO, all independently result in an increase in calcium, which in turn has the potential to initiate oocyte activation, culminating in zona hardening. Quantification of the metabolome and proteome of the oocyte has revealed that whereas slow freezing has a dramatic effect on cell physiology, vitrification appears to have limited effect. This is plausibly achieved by the limited exposure to cryoprotectants. Analysis of meiotic spindle dynamics and embryo development following IVF, also indicate that vitrification is less traumatic than slow freezing, and therefore has the greatest potential for successful oocyte cryopreservation.  相似文献   

19.
The absolute rates of total protein synthesis and tubulin synthesis during oogenesis and early embryogenesis in the mouse have been determined by measuring specific activities of the endogenous methionine pool and rates of incorporation of [35S]methionine into total protein and tubulin. The absolute rate of protein synthesis decreases from 43 to 33 pg/hr/oocyte during meiotic maturation, while the size of the endogenous methionine pool remains essentially unchanged at 65 fmole/oocyte (R. M. Schultz, M. J. LaMarca, and P. M. Wassarman, 1978, Proc. Nat. Acad. Sci. USA,75, 4160). The one-cell mouse embryo synthesizes protein at a rate of 45 pg/hr/embryo, so that fertilization is accompanied by about a 40% increase in the absolute rate of total protein synthesis. The eight-cell compacted embryo synthesizes protein at the rate of 51 pg/hr/embryo. The size of the endogenous methionine pool increases dramatically during early embryogenesis, from 74 fmole in the unfertilized ovum to 137 and 222 fmole in the one-cell embryo and eight-cell compacted embryo, respectively. Tubulin is one of the major proteins synthesized by the mouse oocyte and embryo since the absolute rate of tubulin synthesis is, on the average, 1.3% that of total protein synthesis. The absolute rate of tubulin synthesis decreases from 0.61 to 0.36 pg/hr/oocyte during meiotic maturation and then increases to 0.60 pg/hr/embryo in the one-cell embryo and to 0.66 pg/hr/embryo in the eight-cell compacted embryo. During meiotic maturation and early embryogenesis the direction and magnitude of changes in the rate of tubulin synthesis closely parallel those of total protein synthesis. Although equimolar amounts of tubulin subunits are present in microtubules, the ratio of the absolute rate of synthesis of the β subunit to that of the α subunit is about 2.0 throughout meiotic maturation and early embryogenesis.High-resolution two-dimensional gel electrophoretic analysis of [35S]methionine-labeled proteins reveals that many of the newly synthesized proteins that first appear during meiotic maturation of the oocyte continue to be synthesized in the one-cell embryo. Nearly all of the proteins synthesized in the one-cell embryo are also synthesized in the unfertilized ovum, although some changes in the pattern of protein synthesis are associated with fertilization. Therefore, the developmental program for early embryogenesis in the mouse appears to be activated during meiotic maturation of the oocyte. These results are compared with those obtained using oocytes and embryos from nonmammalian animal species.  相似文献   

20.
The aim of this study was to examine the effect of different stimulation protocols on oocyte granularity and to determine the influence of cytoplasmic granularity on further embryo development. A total of 2448 oocytes from 393 intracytoplasmic sperm injection (ICSI) cycles were analysed retrospectively. Oocytes were classified into 5 groups according to cytoplasmic granularity. (A) no granule or 1-2 small (<5 μm) granules; (B) more than 3 small granules; (C) large granules (>5 μm); (D) refractile body; (E) dense centrally located granular area. Correlation between characteristics of hormonal stimulation, oocyte granularity and embryo development was analysed. The occurrence of cytoplasmic granularity was influenced by the patient's age and characteristics of stimulation. The type of granulation had no effect on fertilization rate and zygote morphology. However, some type of granulation resulted in a lower cleavage rate and more fragmented embryos. Our results provided additional information on how hormonal stimulation affects oocyte quality. While cytoplasmic granularity seems not to have an effect on fertilization and embryo development, the presence of refractile body in the oocyte is associated with reduced cleavage rates and impaired embryo development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号