首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dark-adapted intact spinach chloroplasts exhibited two peaks,P and M1, at the early phase of fluorescence induction and atransient reduction of cytochrome f shortly after its initialphotooxidation and in parallel to the appearance of P. Analysisof the peak P and the transient reduction of cytochrome f indicatedthat electron transport in intact spinach chloroplasts was regulatedby light: electron transport was inactivated at the reducingside of photosystem I in the dark-adapted chloroplasts but rapidlyreactivated by illumination. The fluorescence peak M1 was correlatedto the proton gradient formed across the thylakoid membrane. Effects on P and transient reduction of cytochromef of NO2,3-phosphoglycerate (PGA) and oxalacetate (OAA), which can penetrateinto intact chloroplasts and accept electrons at different sitesafter photosystem I, were studied to determine the site of thelight regulation. NC2, which receives electrons fromreduced ferredoxin, markedly diminished both P and the transientreduction of cytochrome.f, whereas PGA and OAA, the reductionsof which are NADP-dependent, failed to affect the two transients.The ineffectiveness of PGA and OAA could not be attributed tothe dark inactivation of glyceraldehyde-3-phosphate and malicdehydrogenases, because dark-adapted chloroplasts still retainedsufficiently high levels of the enzyme activities. The resultsindicate that electron transport in intact spinach chloroplastsis regulated by light after ferredoxin but before NADP, i.e.,at the reducing terminal of the electron transport chain. (Received May 29, 1980; )  相似文献   

2.
In the light the intact chloroplasts of spinach reduce plastocyaninwith a reaction rate comparable to that of the usual HILL reaction,while no reduction nor oxidation of the copper protein is inducedby the chloroplasts in the dark. The dependency of the rateof photoreduction upon light intensity, pH and presence of variousreagents was similar to that of the HILL reaction with the usualHILL oxidants. The photoreduction of plastocyanin was acceleratedby the addition of complete phosphorylating system or ammoniumsulfate to the chloroplasts. Digitonin-treated chloroplast wasfound to be inactive in photoreducing plastocyanin but highlyactive in photo-oxidizing reduced plastocyanin. The rate ofphotooxidation was saturated at about 5, 000 lux, and showeda rather broad pH optimum around pH 8.0—8.5. The effectsof various poisons on the reaction rate were studied. When thedigitonin-treated chloroplasts were fractionated with ethanolinto a chlorophyll-bearing participate fraction and a solublefrac tion, the former was active in catalyzing the photooxidationof reduced plastocyanin, but not in photooxidizing reduced cytochromec.An ap preciable photooxidation of reduced cytochrome cwiththe ethanol-precipi tated fraction was obtained on additionof the soluble fraction, which was effectively replaced by plastocyanin.The properties of the reaction systems responsible for photooxidationof plastocyanin and cytochrome C were compared, and a possiblerole of plastocyanin in the photooxidatory process of the chloroplastswas suggested. 1A part of the present investigation was supported by a researchgrant (GAMN 6208) from ROCKEFELLER Foundation. 2Present address; C.F. KETTERING Research Laboratory, YellowSprings, Ohio, U.S.A.  相似文献   

3.
The contents of photosystem I and photosystem II reaction centers,cytochrome c-553, cytochrome c-550, cytochrome f, cytochromeb-559, cytochrome b-563, plastoquinone and vitamin K1 in thecyanobacterium Synechococcus sp. were determined. About threephotosystem I reaction centers were present for each photosystemII reaction center. The amounts of cytochromes functioning betweenthe two photosystems were approximately half those of the photosystemI reaction center. Plastocyanin was not detected, while plastoquinoneand vitamin K1 were present in excess of other electron carriersand reaction centers. The results indicate the importance ofplastoquinone and cytochrome c-553 for cooperation of the tworeaction centers through electron transport. 1Present address: Toray Basic Research Laboratory, 1111 Tebiro,Kamakura, Kanagawa 248, Japan. (Received June 17, 1982; Accepted January 17, 1983)  相似文献   

4.
Cytochrome composition of the cyanobacterial photosyntheticsystem was studied with Anacystis nidulans (Tx 20) in relationto the chromatic regulation of photosystem composition. Comparisonof cytochrome compositions in cells with a high PS I/II ratio(3.0, grown under weak orange light) and with a low ratio (1.6,grown under weak red light) indicated that cytochrome compositionwas also changed in the chromatic regulation of photosystemcomposition. Two types of cytochrome change were observed: 1)contents of cytochromes C553 and c548 were changed in parallelwith the changes in PS I content, and 2) cytochrome b553 andcytochrome b6-f complex were held at a constant molar ratioto PS II. The molar ratio, PS II : cytochrome b559 : cytochromeb6-f complex : cytochrome c553 : PS I : cytochrome C548, inthe red-grown cells was 1 : 2.5 : 1.3 : 0.17 : 1.6 : 0.67, andthe ratio in the orange-grown cells, 1:2.4:0.9:0.32:3.0:1.2.In both types of cells, almost all cytochrome f in the cytochromeb6-f complex was rapidly oxidized after multiple flash activation,indicating that all cytochrome b6-f complexes in cells of bothtypes are functionally connected to PS I, even when the molarratio to PS I is largely changed. The content of cytochromeC553 was at most 0.14 of PS I, suggesting that the cytochrometurns over several times per one turnover of PS I. 1Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya, Tokyo158, Japan. (Received January 20, 1986; Accepted March 17, 1986)  相似文献   

5.
Cytochrome b561 from Rhodopseudomonas sphaeroides had cytochromec (c2) oxidase activity and a pH optimum at 6.0 for this activity.The activity was affected by the ionic strength of the reactionmixture. The apparent Km and maximal velocity (Vmax) valuesin the absence of addea salts were 14 µM and 120 nmoloxidized per min per mg protein for horse heart cytochrome c.Reduced horse heart cytochrome c was reoxidized in first-orderkinetics by this cytochrome b561. The specific activity was0.7 s–1 per mg protein at 20°C at the concentrationof 30 µMM cytochrome c. Activity was inhibited by KCN and NaN3, but not by antimycin.The addition of a low concentration of KCN to the cytochromeb561 produced a change in the absorption spectrum, evidencethat KCN interacts with the heme moiety of cytochrome b561.Results of this and preceeding studies show that the cytochromeoxidase (cytochrome "o") described earlier (Sasaki et al. 1970)is cytochrome b561. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

6.
Quantitative study of the cytochrome c acting in the photosyntheticsystem of the blue-green alga Anabaena variabilis (M-2) wasdone with membrane fragments and intact cells. Membrane fragments highly active in the NADP+-Hill reaction(above 200 µmoles/mg chl.a;-hr) retained photoresponsivecytochrome c equal only one-tenth that of P700, while the plastocyanincontent was almost equal to that of P700. The cytochrome contentin intact cells was a little larger than that in membrane fragmentson the chlorophyll a basis. However, the values relative toP700 (1/9) and plastocyanin (1/10) were identical with thosein membrane fragments. The content was also far smaller thanthat of reaction center II's (1/6). If the cytochrome mediatesall electrons from reaction center II, the cytochrome oxidation-reductionshould have a rate constant of 2.4?102 sec–1 which isone order above of the rate constant of the cytochrome reduction(2.3 to 3.5?101sec–1). These quantitative relationshipsindicate that in Anabaena variabilis (M-2), c-type cytochrome,either cytochrome f or algal cytochrome c, cannot function inthe main electron flow between two reaction centers. (Received September 8, 1978; )  相似文献   

7.
The activity of various electron carriers, including DPIP, spinachplastocyanin, mammalian cytochrome c, and Anabaena cytochrome553, as donor in the reaction induced by the photochemical systemI was examined with lamellar fragments of various algae andspinach. Reduced DPIP was an effective electron donor irrespective ofthe organisms, when it was supplied at a high concentration(10–3 M). Spinach plastocyanin was effective in the reactionswith the lamellae of green algae, Euglena, diatom Phaeodactyrumand red algae Porphyra yezoensis and Porphyra sp. Yamamoto II,whereas it was inactive in the lamellae of blue-green algae.Horse-heart cytochrome c and Anabaena cytochrome 553 were activein the reaction with the lamellae of bluegreen algae. The formercytochrome was also active in the reactions in Porphyridiumand Cyanidium. The cytochromes were less active in the reactionsin which spinach plastocyanin acted as effective electron donor. The data were interpreted as that the photochemical system Iin bluegreen algae differs from that of other photosyntheticorganisms with respect to the properties of the site of theelectron-input. 1 Present address: Nomura Research Institute for Technologyand Economics, Kamakura, Kanagawa. 2 Present address: Ocean Research Institute, University of Tokyo,Nakano, Tokyo.  相似文献   

8.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

9.
A cytochrome b6f complex was isolated and purified from Spirulinasp. The complex was solubilized with n-heptyl ß-D-thioglucosideand chromatographed on a DEAE-Toyopearl 650M column. The purifiedcomplex contained a small amount of chlorophyll and carotenoid.At least four polypeptides were present in the complex: cytochromef (29 kDa), cytochrome b6(23 kDa), iron-sulfur protein (ISP,23 kDa), and a 17 kDa polypeptide. Each polypeptide was separatedfrom the complex treated with 2-mercaptoethanol or urea. Theabsorption spectra of cytochrome b6 and cytochrome f were similarto those of Anabaena and spinach as expected. The complex wasactive in supporting ubiquinol-cytochrome c oxidoreductase activity.Fifty percent inhibition of the activity was accomplished by1 µM dibromothymoquinone (DBMIB). The Km values for ubiquinol-2and cytochrome c (horse heart) were 5.7 µM and 7.4 µM,respectively. (Received August 15, 1988; Accepted November 14, 1988)  相似文献   

10.
Palisade tissue chloroplasts (P-Chlts) and spongy tissue chloroplasts(S-Chlts) were separately isolated from spinach leaves, andtheir photosynthetic properties were compared. The followingresults were obtained: (1) At saturating light, the activities of overall electrontransport and CO2 fixation in P-Chlts were respectively 1.6–2.0and 2.5–3.0 times higher than those in S-Chlts on a Chlbasis. (2) The contents of PS I and PS II reaction centers (P700 and47 kDa polypeptide, respectively) were slightly higher in P-Chltsthan in S-Chlts, while the contents of plastoquinone, Cyt f,plastocyanin, ferredoxin, ferredoxin-NADP+ reductase, couplingfactor and ribulose-bisphosphate carboxylase were 1.6–2.2times higher in P-Chlts than in S-Chlts on a Chl basis. (3) Electron microscopic examination of chloroplast ultrastructureshowed that S-Chlts have highly stacked grana accompanied byhigher proportion of appressed thylakoids relative to non-appressedthylakoids, while P-Chlts have poorly stacked grana. The volumeratio of thylakoids to stroma was higher in S-Chlts than inP-Chlts. These results indicate that mesophyll chloroplasts adapt tothe light environment within a leaf in a similar way that thesun and shade plant chloroplasts adapt to the light environmentwithin a canopy. (Received July 19, 1984; Accepted October 13, 1984)  相似文献   

11.
Cytochrome c reducing substance (CRS), a redox substance discoveredin photoreactive lamellar fragments, was purified by Sephadexcolumn chromatography. Chromatographic behaviours of CRS ofAnabaena and spinach were essentially the same. Purified CRSof Anabaena showed an absorption spectrum having one absorptionmaximum around 260 mµ. The absorption peak disappearedon addition of excess amount of borohydride. Similar absorptionchange on borohydride addition was observed with spinach CRSpreparation. Purified preparations of Anabaena and spinach CRS supportedphotophosphorylation in spinach broken chloroplasts. The phosphorylationwas found to couple the electron flow from water to molecularoxygen. 1This work was supported by grant GM-11300 from the NationalInstitute of Health, U. S. A. 2Present address: Institute of Applied Microbiology, The Universityof Tokyo, Tokyo, Japan.  相似文献   

12.
A diurnal rhythm was found in the Hill reaction in cell-freeextracts of the green alga Bryopsis maxima. The rate of photoreductionof 2,6-dichloroindophenol showed a rhythm synchronized withthat of photosynthetic O2 evolution. A diurnal rhythm was alsoobserved in the rate of O2 evolution accompanying the reductionof P-benzoquinone with phase and frequency similar to thoseof the rhythm of photosynthesis. These results indicate thata regulation mechanism underlying the photosynthesis rhythmexists in the photosynthetic electron transport chain in chloroplasts. 1 Present address: Mitsubishi Yuka Laboratory of Medical Science,Narimasu, Itabashi, Tokyo 175, Japan. (Received January 6, 1979; )  相似文献   

13.
Cytochrome aa3 was found to occur in Halobacterium halobiumat an early exponential phase of growth. Some of its spectralproperties were determined with a solubilized membrane fractionof the bacterium. Cytochrome c oxidizing activity of the cytochromeaa3 was not dependent on salt concentration, but decreased steeplywith increasing buffer concentration of the reaction mixture,just as the activity of cytochrome aa3 from non-halophilic bacteria. (Received July 4, 1986; Accepted October 17, 1986)  相似文献   

14.
Rotational streaming of the cytoplasm including chloroplastswas induced by L-histidine, as well as by light, on the anticlinalface of leaf cells of Egeria densa. In the case of treatmentwith L-histidine some of the chloroplasts remained stationaryon the periclinal face of cells after rotational cytoplasmicstreaming was initiated. However, these chloroplasts were easilydislodged and translocated to the centrifugal end of the histidine-treatedcells by application of a centrifugal force that barely affectedthe location of chloroplasts in cells incubated in the darkwithout L-histidine. This result indicates that the anchoringof chloroplasts was weakened by L-histidine. Thus only the releaseof chloroplasts from anchoring was not enough for initiationof their streaming. The cytoplasmic pH (pHc) and vacuolar pH(pHv) were noninvasively monitored by in vivo 31P-nuclear magneticresonance (NMR) spectroscopy. Compared with the dark controlvalue, both illumination and treatment with L-histidine increasedthe pHc by 0.3 units. In contrast, pHv changed only a littlewith both illumination and treatment with L-histidine. Releaseof chloroplasts from anchoring and initiation of cytoplasmicstreaming are discussed in relation to the increase in pHc inducedby both light and L-histidine. 4 Present address: Department of Cell Biology, National Instituteof Agrobiological Resources, Kannondai, Tsukuba, Ibaraki, 305Japan 5 Present address: Marine Biotechnology Institute Co., Ltd.,Head Office, 2-35-10 Hongo, Bunkyo-ku, Tokyo, 113 Japan (Received July 16, 1990; Accepted December 20, 1990)  相似文献   

15.
Intact chloroplasts (about 70% Class I chloroplasts) isolatedfrom spinach leaves incorporated 150 nmoles of [1-14C] acetateinto fatty acids per mg chlorophyll in 1 hr at pH 8.3, 25°Cand 25,000 lux. On electron and phase-contrast microscopiescombined with hypotonic treatment of chloroplasts, this syntheticactivity was shown to be proportional to the percentage of ClassI chloroplasts in the preparation. Light was necessary for thesynthesis, the activity in the complete reaction mixture inthe dark being only 2% of that in the light. The synthetic activityincreased with increasing intensities of light to reach saturationat 6,000 lux. CoA and ATP were most effective as cofactors,HCO3, HPO42–, Mg2$ and Mn2$ were less effective.ATP could be replaced by ADP in the presence of Pi, suggestingpossible supply of ATP by photophosphorylation. Omission ofthe NADPH-generation system and NADH did not affect the synthesis,indicating sufficient provision of endogenous NADPH and NADHin intact chloroplasts under light. Addition of DTE did notcause recovery of the synthetic activity of intact chloroplastsin the dark. 1 Present address: Radioisotope Centre, University of Tokyo,Yayoi, Bunkyo, Tokyo 113, Japan. (Received August 26, 1974; )  相似文献   

16.
Jerry Brand  Anthony San Pietro 《BBA》1973,325(2):255-265
1. Chloroplast fragments from either Chlamydomonas reinhardi or spinach, which lack plastocyanin, or from Euglena gracilis depleted of cytochrome c552, require a large excess of exogenously added plastocyanin or cytochrome c552 to restore Photosystem I activity.2. In the presence of a small amount of polylysine, Photosystem I activity of chloroplast fragments is stimulated greatly by plastocyanin or cytochrome c552, and the reaction is saturated at a lower concentration of these proteins. Higher concentrations of polylysine inhibit Photosystem I activity; the inhibition is not reversed by plastocyanin or cytochrome c552.3. Salt protects chloroplast fragments from stimulation by polylysine plus plastocyanin or cytochrome c552, and also reverses this stimulation.4. The data suggest that polylysine, at low concentration, enhances binding of plastocyanin or cytochrome c552 to chloroplast membranes, thereby increasing the effective concentration at their site of function. The total inhibition of Photosystem I activity, independent of the presence of plastocyanin or cytochrome c552, at higher polylysine concentrations is similar probably to that observed previously in chloroplasts which retain their plastocyanin.  相似文献   

17.
  1. Cytochromes a1590, b560, c1554 and c1552 were isolated andpurifiedfrom a strain of Acetobacter suboxydans. The proceduresusedwere described in detail.
  2. The main cytochrome band at550-560 mµ in intact cellssplitted at liquid air temperatureinto two bands, 551 mµ(strong) and 559 mµ (weak).
  3. Optical and physiological properties of the four cytochromeswere investigated. Lactic dehydrogenase activity was found tobe associated with cytochrome c1554. The two c1-type cytochromes,especially cytochrome c1554, persisted in their reduced formafter the purification through many steps.
  4. By some combinationsof isolated components reconstruction ofthe oxygen uptake systemcould be realized.
  5. The oxygen-consuming activity of purifiedoxidase preparationswas accelerated by a-tocopherol but notby Emasoll 4130 andTween 80.
  6. Some discussions were made onthe nature of terminal oxidase,the role of cytochrome c1552in the electron-transport system,and persistence of reducedstate of c1-type cytochromes.
  7. A possible scheme of the electron-transferringsystem of Acetobactersuboxydans was presented.
(Received May 16, 1960; )  相似文献   

18.
1. From leaves of Portulaca grandiflora, a substance which inhibitedthe IAA-induced elongation of Avena coleoptile sections andthe adventitious root formation of Raphanus hypocotyl cuttingswas separated by means of thin layer chromatography. It wasisolated and crystallized. 2. On paper chromatograms, this substance gave the same Rf valuesas the inhibitor from leaves of Xanthium strumarium and thatfrom leaves of Helianthus tuberosus ("heliangine"), namely,Rf0.9 in ammoniacal isopropanol, Rf 0.85 in methanol-water andRf 0.0 in n-hexane-water. On thin layer chromatograms, however,these inhibitors were clearly separated from each other. 3. Infra-red absorption spectrum also indicated that this substanceis identical with neither xanthinin nor heliangine. 1 Contribution No. 8 from the Botanical Gardens, Faculty ofScience, University of Tokyo, Koishikawa, Tokyo  相似文献   

19.
Both KMnO4 and HCHO in concentrations used for fixation forelectron microscopy induce pronounced swelling of spinach chloroplasts.However, since electron microscopy samples small numbers, itis possible to overlook the swelling effect because the sizerange of the swollen chloroplasts can overlap the extremelywide range of chloroplasts in living mesophyll cells. HCHO fixesspinach chloroplasts only after 16 hr incubation, as verifiedby failure of the chloroplaststo swell when subsequently washedwith water. However, the HCHO treatment fails to prevent aninitial swelling and KMnO4 further swells chloroplasts pre-fixedwith HCHO. Spinach chloroplasts in vivo measured in face area27.7 0.06 µ2 mean value, 23.8 µ2 mode value, range6.2 to 102.9 µ2, and their distribution is skewed so thatthe coefficient of skewness is 0.15. Chloroplasts isolated directlyinto phosphate buffered 4% HCHO after 24 hrs measured in facearea 58.2 µ2 mean value, 46.5 µ2 mode value, range22 to 121 µ2, and the coefficient of skewness increasedto 0.24. When such chloroplasts were additionally treated withphosphate buffered 2.8 % KMnO4 the spinach chloroplasts measuredin facearea 96.4 1.40 µ2 mean value, 86.1 µ2 modevalue, range22 to 203 µ2, and the coefficient of skewnessunchanged at 0.24. Volumes of spinach chloroplasts isolatedin NaCl as reported in the literature approach the volumes ofchloroplasts swollen by HCHO and KMnO4. Some problems concerningsampling difficulties because of wide size ranges and skeweddistributions are discussed. 1 Present address: Department of Agriculture, Bangkhen ExperimentStation, Bangkok, Thailand. 2 Present address: Department of Biology, Wright State University,Dayton, Ohio 45431 U.S.A.  相似文献   

20.
The photoactive reaction center (RC) complex from the greensulfur bacterium Chlorobium limicola f. thiosulfatophilum, strainLarsen, was isolated after solubilization and ammonium sulfatefractionation followed by ion-exchange chromatography. The spectrumof the complex was almost identical with that of the similarRC complex isolated by Feiler et al. [(1992) Biochemistry 31:2608–2614] except for the presence of cytochrome c551instead of c553 in the latter study. A molecular ratio of BChla to P840 of the isolated RC complex was assayed to be 25–35.SDSPAGE analysis revealed that the isolated complex containedthree major polypeptides with apparent molecular masses of 68,41 and 21 kDa, respectively. The 21-kDa polypeptide was identifiedto be a heme-binding protein by staining the gel for peroxidaseactivity. The cytochrome c551 was oxidized by flash light ina biphasic manner with half times of 90 and 390 µs, respectively,that coincided with the reduction half times of P840+. Threedistinct iron-sulfur centers assigned to FA, FB and Fx, respectively,from their g-values were detected by EPR spectroscopy at cryogenictemperature. These results suggest that the present preparationcontains a minimal functional unit of the RC of this bacterium,and that this complex appears to lie on a evolutionary linebetween RC's of purple bacteria and photosystem I. (Received August 18, 1992; Accepted October 28, 1992)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号