共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
4.
Induction and characterization of mitochondrial DNA mutants in Chlamydomonas reinhardtii 总被引:2,自引:0,他引:2 下载免费PDF全文
R F Matagne M R Michel-Wolwertz C Munaut C Duyckaerts F Sluse 《The Journal of cell biology》1989,108(4):1221-1226
In addition to lethal minute colony mutations which correspond to loss of mitochondrial DNA, acriflavin induces in Chlamydomonas reinhardtii a low percentage of cells that grow in the light but do not divide under heterotrophic conditions. Two such obligate photoautotrophic mutants were shown to lack the cyanide-sensitive cytochrome pathway of the respiration and to have a reduced cytochrome c oxidase activity. In crosses to wild type, the mutations are transmitted almost exclusively from the mating type minus parent. A same pattern of inheritance is seen for the mitochondrial DNA in crosses between the two interfertile species C. reinhardtii and Chlamydomonas smithii. Both mutants have a deletion in the region of the mitochondrial DNA containing the apocytochrome b gene and possibly the unidentified URFx gene. 相似文献
5.
Evguenieva-Hackenberg E 《Molecular microbiology》2005,57(2):318-325
The exact knowledge on the ribosomal RNA (rRNA) structure is an important prerequisite for work with rRNA sequences in bioinformatic analyses and in experimental research. Most available rRNA sequences of bacteria are based on gene sequences and on similarity analyses using Escherichia coli rRNA as a standard. Therefore, it is often overlooked that many bacteria harbour mature rRNA 'in pieces'. In some cases, the processing steps during the fragmentation lead to the removal of rRNA segments that are usually found in the ribosome. In this review, the current knowledge on the mechanisms of rRNA fragmentation and on the occurrence of fragmented rRNA in bacteria is summarized, and the physiological implications of this phenomenon are discussed. 相似文献
6.
In six different angiosperms, mitochondrial genes for 18S and 5S rRNAs were found to be closely linked but distant from mitochondrial 26S rRNA genes.This is paper no. 5 in the series Organization and Expression of the Mitochondrial Genome of Plants 相似文献
7.
8.
9.
10.
11.
12.
13.
Nadine Jungnick Yunbing Ma Bratati Mukherjee Julie C. Cronan Dequantarius J. Speed Susan M. Laborde David J. Longstreth James V. Moroney 《Photosynthesis research》2014,121(2-3):159-173
The photosynthetic, unicellular green alga, Chlamydomonas reinhardtii, lives in environments that often contain low concentrations of CO2 and HCO3 ?, the utilizable forms of inorganic carbon (Ci). C. reinhardtii possesses a carbon concentrating mechanism (CCM) which can provide suitable amounts of Ci for growth and development. This CCM is induced when the CO2 concentration is at air levels or lower and is comprised of a set of proteins that allow the efficient uptake of Ci into the cell as well as its directed transport to the site where Rubisco fixes CO2 into biomolecules. While several components of the CCM have been identified in recent years, the picture is still far from complete. To further improve our knowledge of the CCM, we undertook a mutagenesis project where an antibiotic resistance cassette was randomly inserted into the C. reinhardtii genome resulting in the generation of 22,000 mutants. The mutant collection was screened using both a published PCR-based approach (Gonzalez-Ballester et al. 2011) and a phenotypic growth screen. The PCR-based screen did not rely on a colony having an altered growth phenotype and was used to identify colonies with disruptions in genes previously identified as being associated with the CCM-related gene. Eleven independent insertional mutations were identified in eight different genes showing the usefulness of this approach in generating mutations in CCM-related genes of interest as well as identifying new CCM components. Further improvements of this method are also discussed. 相似文献
14.
15.
16.
The nucleotide sequence of a segment of the mtDNA molecule of Drosophila yakuba which contains the A+T-rich region and the small and large rRNA genes separated by the tRNAval gene has been determined. The 5' end of the small rRNA gene was located by S1 protection analysis. In contrast to mammalian mtDNA, a tRNA gene was not found at the 5' end of the D. yakuba small rRNA gene. The small and large rRNA genes are 20.7% and 16.7% G+C and contain only 789 and 1326 nucleotides. The 5' regions of the small rRNA gene (371 nucleotides) and of the large rRNA gene (643 nucleotides) are extremely low in G+C (14.6% and 9.5%, respectively) and convincing sequence homologies between these regions and the corresponding regions of mouse mt-rRNA genes were found only for a few short segments. Nevertheless, the entire lengths of both of the D. yakuba mt-rRNA genes can be folded into secondary structures which are remarkably similar to secondary structures proposed for the rRNAs of mouse mtDNA. The replication origin-containing, A+T-rich region (1077 nucleotides; 92.8% A+T), which lies between the tRNAile gene and the small rRNA gene, lacks open reading frames greater than 123 nucleotides. 相似文献
17.
Transfer RNA gene recruitment in mitochondrial DNA 总被引:11,自引:0,他引:11
Transfer RNA (tRNA) is the adaptor molecule that mediates recognition of the codon sequence in mRNA and enables its translation into the appropriate amino acid. Accordingly, phylogenetic relationships among tRNA genes are often thought to recapitulate the evolution of the genetic code. However, it has been demonstrated experimentally that one tRNA gene can be replaced with a copy of another carrying a single mutation in its anticodon sequence. In this article, we show that such "gene recruitment" has occurred recently and repeatedly in the mitochondrial genome of the demosponge Axinella corrugata and appears to be a common phenomenon in the evolution of the tRNA multigene family. 相似文献
18.
In Chlamydomonas reinhardtii several nucleus-encoded proteins that participate in the mitochondrial oxidative phosphorylation are targeted to the organelle by unusually long mitochondrial targeting sequences. Here, we explored the components of the mitochondrial import machinery of the green alga. We mined the algal genome, searching for yeast and plant homologs, and reconstructed the mitochondrial import machinery. All the main translocation components were identified in Chlamydomonas as well as in Arabidopsis thaliana and in the recently sequenced moss Physcomitrella patens. Some of these components appear to be duplicated, as is the case of Tim22. In contrast, several yeast components that have relatively large hydrophilic regions exposed to the cytosol or to the intermembrane space seem to be absent in land plants and green algae. If present at all, these components of plants and algae may differ significantly from their yeast counterparts. We propose that long mitochondrial targeting sequences in some Chlamydomonas mitochondrial protein precursors are involved in preventing the aggregation of the hydrophobic proteins they carry. 相似文献
19.
Previous studies of the mitochondrial carbonic anhydrase (mtCA) of Chlamydomonas reinhardtii showed that expression of the two genes encoding this enzyme activity required photosynthetically active radiation and a low CO(2) concentration. These studies suggested that the mtCA was involved in the inorganic carbon-concentrating mechanism. We have now shown that the expression of the mtCA at low CO(2) concentrations decreases when the external NH(4)(+) concentration decreases, to the point of being undetectable when NH(4)(+) supply restricts the rate of photoautotrophic growth. The expression of mtCA can also be induced at supra-atmospheric partial pressure of CO(2) by increasing the NH(4)(+) concentration in the growth medium. Conditions that favor mtCA expression usually also stimulate anaplerosis. We therefore propose that the mtCA is involved in supplying HCO(3)(-) for anaplerotic assimilation catalyzed by phosphoenolpyruvate carboxylase, which provides C skeletons for N assimilation under some circumstances. 相似文献