首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Survival of Salmonella typhimurium within a vacuole in host cells depends on secreted virulence factors encoded by the Salmonella pathogenicity island 2 (SPI-2). High levels of cholesterol are detected at the Salmonella -containing vacuole (SCV). Here we show that the SPI-2 effector SseJ esterifies cholesterol in vitro , in cells and during infection. Intracellular infections with wild-type as compared with Δ sseJ bacteria led to higher levels of cholesterol ester production in HeLa cells and RAW macrophages and were shown to increase levels of lipid droplets (structures enriched in cholesterol esters). Ectopic expression of SseJ reduced cholesterol levels in cellular membranes and antagonized a major membrane activity of a second bacterial effector known to be important to the stability of the SCV. Previous studies in mouse models of infection have established a virulence defect in Δ sseJ bacteria and have suggested a role for SseJ in regulating SCV dynamics. Our data indicating the molecular activity of SseJ suggest that cholesterol and its esterification at the SCV are functionally important for intracellular bacterial survival.  相似文献   

2.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative intracellular pathogen that causes disease in a variety of hosts. S. Typhimurium actively invade host cells and typically reside within a membrane-bound compartment called the Salmonella-containing vacuole (SCV). The bacteria modify the fate of the SCV using two independent type III secretion systems (TTSS). TTSS are known to damage eukaryotic cell membranes and S. Typhimurium has been suggested to damage the SCV using its Salmonella pathogenicity island (SPI)-1 encoded TTSS. Here we show that this damage gives rise to an intracellular bacterial population targeted by the autophagy system during in vitro infection. Approximately 20% of intracellular S. Typhimurium colocalized with the autophagy marker GFP-LC3 at 1 h postinfection. Autophagy of S. Typhimurium was dependent upon the SPI-1 TTSS and bacterial protein synthesis. Bacteria targeted by the autophagy system were often associated with ubiquitinated proteins, indicating their exposure to the cytosol. Surprisingly, these bacteria also colocalized with SCV markers. Autophagy-deficient (atg5-/-) cells were more permissive for intracellular growth by S. Typhimurium than normal cells, allowing increased bacterial growth in the cytosol. We propose a model in which the host autophagy system targets bacteria in SCVs damaged by the SPI-1 TTSS. This serves to retain intracellular S. Typhimurium within vacuoles early after infection to protect the cytosol from bacterial colonization. Our findings support a role for autophagy in innate immunity and demonstrate that Salmonella infection is a powerful model to study the autophagy process.  相似文献   

3.
Salmonella enterica uses two functionally distinct type III secretion systems encoded on the pathogenicity islands SPI-1 and SPI-2 to transfer effector proteins into host cells. A major function of the SPI-1 secretion system is to enable bacterial invasion of epithelial cells and the principal role of SPI-2 is to facilitate the replication of intracellular bacteria within membrane-bound Salmonella-containing vacuoles (SCVs). Studies of mutant bacteria defective for SPI-2-dependent secretion have revealed a variety of functions that can be attributed to this secretion system. These include an inhibition of various aspects of endocytic trafficking, an avoidance of NADPH oxidase-dependent killing, the induction of a delayed apoptosis-like host cell death, the control of SCV membrane dynamics, the assembly of a meshwork of F-actin around the SCV, an accumulation of cholesterol around the SCV and interference with the localization of inducible nitric oxide synthase to the SCV. Several effector proteins that are translocated across the vacuolar membrane in a SPI-2-dependent manner have now been identified. These are encoded both within and outside SPI-2. The characteristics of these effectors, and their relationship to the physiological functions listed above, are the subject of this review. The emerging picture is of a multifunctional system, whose activities are explained in part by effectors that control interactions between the SCV and intracellular membrane compartments.  相似文献   

4.
Salmonella enterica serovar Typhimurium (S. typhimurium) is a gram-negative facultative intracellular pathogen that can infect a broad range of mammalian hosts. Following invasion of host cells, the majority of S. typhimurium are known to reside in a membrane-bound compartment known as the Salmonella-containing vacuole (SCV). S. typhimurium actively remodels this compartment using bacterial virulence proteins, called effectors, to establish a protected niche where it can replicate. S. typhimurium delivers more than 30 effectors into the host cell cytosol by bacterial type three secretion systems, encoded by Salmonella pathogenicity island 1 or 2 (SPI-1 or SPI-2). Recent studies have revealed a critical role for the SPI-1 effector SopB in 'directing traffic' at early stages of infection, allowing the bacteria to control SCV maturation by modulating its interaction with the endocytic system. At later stages of infection, the SCV establishes a 'nest' near the Golgi where optimal bacterial growth takes place. In this study, we highlight these recent developments in our understanding of SCV trafficking.  相似文献   

5.
Maturation and maintenance of the intracellular vacuole in which Salmonella replicates is controlled by virulence proteins including the type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2). Here, we show that, several hours after bacterial uptake into different host cell types, Salmonella induces the formation of an F-actin meshwork around bacterial vacuoles. This structure is assembled de novo from the cellular G-actin pool in close proximity to the Salmonella vacuolar membrane. We demonstrate that the phenomenon does not require the Inv/Spa type III secretion system or cognate effector proteins, which induce actin polymerization during bacterial invasion, but does require a functional SPI-2 type III secretion system, which plays an important role in intracellular replication and systemic infection in mice. Treatment with actin-depolymerizing agents significantly inhibited intramacrophage replication of wild-type Salmonella typhimurium . Furthermore, after this treatment, wild-type bacteria were released into the host cell cytoplasm, whereas SPI-2 mutant bacteria remained within vacuoles. We conclude that actin assembly plays an important role in the establishment of an intracellular niche that sustains bacterial growth.  相似文献   

6.
During intracellular life, Salmonella enterica proliferate within a specialized membrane compartment, the Salmonella-containing vacuole (SCV), and interfere with the microtubule cytoskeleton and cellular transport. To characterize the interaction of intracellular Salmonella with host cell transport processes, we utilized various model systems to follow microtubule-dependent transport. The vesicular stomatitis virus glycoprotein (VSVG) is a commonly used marker to follow protein transport from the Golgi to the plasma membrane. Using a VSVG-GFP fusion protein, we observed that virulent intracellular Salmonella alter exocytotic transport and recruit exocytotic transport vesicles to the SCV. This virulence function was dependent on the function of the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2) and more specifically on a subset of SPI2 effector proteins. Furthermore, the Golgi to plasma membrane traffic of the shingolipid C(5)-ceramide was redirected to the SCV by virulent Salmonella. We propose that Salmonella modulates the biogenesis of the SCV by deviating this compartment from the default endocytic pathway to an organelle that interacts with the exocytic pathway. This observation might reveal a novel element of the intracellular survival and replication strategy of Salmonella.  相似文献   

7.
Salmonella enterica are facultative intracellular bacterial pathogens that proliferate within host cells in a membrane-bounded compartment, the Salmonella -containing vacuole (SCV). Intracellular replication of Salmonella is mediated by bacterial effectors translocated on to the cytoplasmic face of the SCV membrane by a type III secretion system. Some of these effectors manipulate the host endocytic pathway, resulting in the formation in epithelial cells of tubules enriched in late endosomal markers, known as Salmonella -induced filaments (SIFs). However, much less is known about possible interference of Salmonella with the secretory pathway. Here, a small-interference RNA screen revealed that secretory carrier membrane proteins (SCAMPs) 2 and 3 contribute to the maintenance of SCVs in the Golgi region of HeLa cells. This is likely to reflect a function of SCAMPs in vacuolar membrane dynamics. Moreover, SCAMP3, which accumulates on the trans -Golgi network in uninfected cells, marked tubules induced by Salmonella effectors that overlapped with SIFs but which also comprised distinct tubules lacking late endosomal proteins. We propose that SCAMP3 tubules reflect a manipulation of specific post-Golgi trafficking that might allow Salmonella to acquire nutrients and membrane, or to control host immune responses.  相似文献   

8.
Salmonella enterica is an intracellular bacterial pathogen that inhabits membrane-bound vacuoles of eukaryotic cells. Coined as the 'Salmonella-containing vacuole' (SCV), this compartment has been studied for two decades as a replicative niche. Recent findings reveal, however, marked differences in the lifestyle of bacteria enclosed in the SCV of varied host cell types. In fibroblasts, the emerging view supports a model of bacteria facing in the SCV a 'to grow' or 'not to grow' dilemma, which is solved by entering in a dormancy-like state. Fine-tuning of host cell defense/survival routes, drastic metabolic shift down, adaptation to hypoxia conditions, and attenuation of own virulence systems emerge as strategies used by Salmonella to intentionally reduce the growth rate inside the SCV.  相似文献   

9.
Autophagy is responsible for the degradation of cytosolic components within eukaryotic cells. Interestingly, autophagy also appears to play a role in recognizing invading intracellular pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that normally resides and replicates within the Salmonella-containing vacuole (SCV). However, during in vitro infection a population of S. Typhimurium damage and escape from the SCV to enter the cytosol. We have observed that some intracellular S. Typhimurium are recognized by autophagy under in vitro infection conditions. Immunofluorescence studies revealed that autophagy recognizes the population of S. Typhimurium within damaged SCVs early after infection. The consequences of autophagic recognition of S. Typhimurium are still being elucidated, though a restrictive effect on intracellular bacterial replication has been demonstrated. Results of our in vitro infection studies are consistent with autophagy playing a role in cellular defense against S. Typhimurium that become exposed to the cytosol.  相似文献   

10.
《Autophagy》2013,9(3):156-158
Autophagy is responsible for the degradation of cytosolic components within eukaryotic cells. Interestingly, autophagy also appears to play a role in recognizing invading intracellular pathogens. Salmonella enterica serovar Typhimurium (S. Typhimurium) is an intracellular pathogen that normally resides and replicates within the Salmonella-containing vacuole (SCV). However, during in vitro infection a population of S. Typhimurium damage and escape from the SCV to enter the cytosol. We have observed that some intracellular S. Typhimurium are recognized by autophagy under in vitro infection conditions. Immunofluorescence studies revealed that autophagy recognizes the population of S.Typhimurium within damaged SCVs early after infection. The consequences of autophagic recognition of S. Typhimurium are still being elucidated, though a restrictive effect on intracellular bacterial replication has been demonstrated. Results of our in vitro infection studies are consistent with autophagy playing a role in cellular defense against S. Typhimurium that become exposed to the cytosol.  相似文献   

11.
Salmonella invades epithelial cells and survives within a membrane‐bound compartment, the Salmonella‐containing vacuole (SCV). We isolated and determined the host protein composition of the SCV at 30 min and 3 h of infection to identify and characterize novel regulators of intracellular bacterial localization and growth. Quantitation of the SCV protein content revealed 392 host proteins specifically enriched at SCVs, out of which 173 associated exclusively with early SCVs, 124 with maturing SCV and 95 proteins during both time‐points. Vacuole interactions with endoplasmic reticulum‐derived coat protein complex II vesicles modulate early steps of SCV maturation, promoting SCV rupture and bacterial hyper‐replication within the host cytosol. On the other hand, SCV interactions with VAMP7‐positive lysosome‐like vesicles promote Salmonella‐induced filament formation and bacterial growth within the late SCV. Our results reveal that the dynamic communication between the SCV and distinct host organelles affects both intracellular Salmonella localization and growth at successive steps of host cell invasion.  相似文献   

12.
Salmonellae employ two type III secretion systems (T3SSs), SPI1 and SPI2, to deliver virulence effectors into mammalian cells. SPI1 effectors, including actin-binding SipA, trigger initial bacterial uptake, whereas SPI2 effectors promote subsequent replication within customized Salmonella-containing vacuoles (SCVs). SCVs sequester actin filaments and subvert microtubule-dependent motors to migrate to the perinuclear region. We demonstrate that SipA delivery continues after Salmonella internalization, with dosage being restricted by host-mediated degradation. SipA is exposed on the cytoplasmic face of the SCV, from where it stimulates bacterial replication in both nonphagocytic cells and macrophages. Although SipA is sufficient to target and redistribute late endosomes, during infection it cooperates with the SPI2 effector SifA to modulate SCV morphology and ensure perinuclear positioning. Our findings define an unexpected additional function for SipA postentry and reveal precise intracellular communication between effectors deployed by distinct T3SSs underlying SCV biogenesis.  相似文献   

13.
Salmonella typhimurium invades mammalian cells and replicates within a vacuole that protects it from the host's microbicidal weapons. The Salmonella-containing vacuole (SCV) undergoes a remodelling akin to that of the host cell's endocytic pathway, but SCV progression is arrested prior to fusion with lysosomes. We studied the role of phosphatidylinositol 3-kinase (PI3-K) in SCV maturation within HeLa cells. Phosphatidylinositol 3-phosphate (PI3P), monitored in situ using fluorescent conjugates of FYVE or PX domains, was found to accumulate transiently on the SCV. Wortmannin prevented PI3P accumulation and the recruitment of EEA1 but did not affect the association of Rab5 with the SCV. Importantly, inhibition of PI3-K also impaired fusion of the SCV with vesicles containing LAMP-1. Rab7, which is thought to be required for association of LAMP-1 with the SCV, still associated with SCV in wortmannin-treated cells. We have therefore concluded that a 3-phosphoinositide-dependent step exists following recruitment of Rab7 to the SCV. The data also imply that 3-phosphoinositide-dependent effectors of Rab5 are not an absolute requirement for recruitment of Rab7. Despite failure to acquire LAMP-1, the SCV persists and allows effective replication of Salmonella within wortmannin-treated host cells. These findings imply that PI3-K is involved in the development of the SCV but is not essential for intracellular survival and proliferation of Salmonella.  相似文献   

14.
Cationic amino acid transporters (mCAT1 and mCAT2B) regulate the arginine availability in macrophages. How in the infected cell a pathogen can alter the arginine metabolism of the host remains to be understood. We reveal here a novel mechanism by which Salmonella exploit mCAT1 and mCAT2B to acquire host arginine towards its own intracellular growth within antigen presenting cells. We demonstrate that Salmonella infected bone marrow derived macrophages and dendritic cells show enhanced arginine uptake and increased expression of mCAT1 and mCAT2B. We show that the mCAT1 transporter is in close proximity to Salmonella containing vacuole (SCV) specifically by live intracellular Salmonella in order to access the macrophage cytosolic arginine pool. Further, Lysosome associated membrane protein 1, a marker of SCV, also was found to colocalize with mCAT1 in the Salmonella infected cell. The intra vacuolar Salmonella then acquire the host arginine via its own arginine transporter, ArgT for growth. The argT knockout strain was unable to acquire host arginine and was attenuated in growth in both macrophages and in mice model of infection. Together, these data reveal survival strategies by which virulent Salmonella adapt to the harsh conditions prevailing in the infected host cells.  相似文献   

15.
Cell stress and infection promote the formation of ubiquitinated aggregates in both non-immune and immune cells. These structures are recognised by the autophagy receptor p62/sequestosome 1 and are substrates for selective autophagy. The intracellular growth of Salmonella enterica occurs in a membranous compartment, the Salmonella-containing vacuole (SCV), and is dependent on effectors translocated to the host cytoplasm by the Salmonella pathogenicity island-2 (SPI-2) encoded type III secretion system (T3SS). Here, we show that bacterial replication is accompanied by the formation of ubiquitinated structures in infected cells. Analysis of bacterial strains carrying mutations in genes encoding SPI-2 T3SS effectors revealed that in epithelial cells, formation of these ubiquitinated structures is dependent on SPI-2 T3SS effector translocation, but is counteracted by the SPI-2 T3SS deubiquitinase SseL. In macrophages, both SPI-2 T3SS-dependent aggregates and aggresome-like induced structures (ALIS) are deubiquitinated by SseL. In the absence of SseL activity, ubiquitinated structures are recognized by the autophagy receptor p62, which recruits LC3 and targets them for autophagic degradation. We found that SseL activity lowers autophagic flux and favours intracellular Salmonella replication. Our data therefore show that there is a host selective autophagy response to intracellular Salmonella infection, which is counteracted by the deubiquitinase SseL.  相似文献   

16.
Intracellular pathogens need to establish specialised niches for survival and proliferation in host cells. The enteropathogen Salmonella enterica accomplishes this by extensive reorganisation of the host endosomal system deploying the SPI2‐encoded type III secretion system (SPI2‐T3SS). Fusion events of endosomal compartments with the Salmonella‐containing vacuole (SCV) form elaborate membrane networks within host cells enabling intracellular nutrition. However, which host compartments exactly are involved in this process and how the integrity of Salmonella‐modified membranes is accomplished are not fully resolved. An RNA interference knockdown screen of host factors involved in cellular logistics identified the ESCRT (endosomal sorting complex required for transport) system as important for proper formation and integrity of the SCV in infected epithelial cells. We demonstrate that subunits of the ESCRT‐III complex are specifically recruited to the SCV and membrane network. To investigate the role of ESCRT‐III for the intracellular lifestyle of Salmonella, a CHMP3 knockout cell line was generated. Infected CHMP3 knockout cells formed amorphous, bulky SCV. Salmonella within these amorphous SCV were in contact with host cell cytosol, and the attenuation of an SPI2‐T3SS‐deficient mutant strain was partially abrogated. ESCRT‐dependent endolysosomal repair mechanisms have recently been described for other intracellular pathogens, and we hypothesise that minor damages of the SCV during bacterial proliferation are repaired by the action of ESCRT‐III recruitment in Salmonella‐infected host cells.  相似文献   

17.
Salcedo SP  Holden DW 《The EMBO journal》2003,22(19):5003-5014
Intracellular replication of the bacterial pathogen Salmonella enterica occurs in membrane-bound compartments called Salmonella-containing vacuoles (SCVs). Maturation of the SCV has been shown to occur by selective interactions with the endocytic pathway. We show here that after invasion of epithelial cells and migration to a perinuclear location, the majority of SCVs become surrounded by membranes of the Golgi network. This process is dependent on the Salmonella pathogenicity island 2 type III secretion system effector SseG. In infected cells, SseG was associated with the SCV and peripheral punctate structures. Only bacterial cells closely associated with the Golgi network were able to multiply; furthermore, mutation of sseG or disruption of the Golgi network inhibited intracellular bacterial growth. When expressed in epithelial cells, SseG co-localized extensively with markers of the trans-Golgi network. We identify a Golgi-targeting domain within SseG, and other regions of the protein that are required for localization of bacteria to the Golgi network. Therefore, replication of Salmonella in epithelial cells is dependent on simultaneous and selective interactions with both endocytic and secretory pathways.  相似文献   

18.
Salmonella typhimurium survives and replicates intracellular in a membrane-bound compartment, the Salmonella-containing vacuole (SCV). In HeLa cells, the SCV matures through interactions with the endocytic pathway, but Salmonella avoids fusion with mature lysosomes. The exact mechanism of the inhibition of phagolysosomal fusion is not understood. Rab GTPases control several proteins involved in membrane fusion and vesicular transport. The small GTPase Rab7 regulates the transport of and fusion between late endosomes and lysosomes and associates with the SCV. We show that the Rab7 GTPase cycle is not affected on the SCV. We then manipulated a pathway downstream of the small GTPase Rab7 in HeLa cells infected with Salmonella. Expression of the Rab7 effector RILP induces recruitment of the dynein/dynactin motor complex to the SCV. Subsequently, SCV fuse with lysosomes. As a result, the intracellular replication of Salmonella is inhibited. Activation of dynein-mediated vesicle transport can thus control intracellular survival of Salmonella.  相似文献   

19.
The Salmonella type III effector, SopB, is an inositol polyphosphate phosphatase that modulates host cell phospholipids at the plasma membrane and the nascent Salmonella -containing vacuole (SCV). Translocated SopB persists for many hours after infection and is ubiquitinated but the significance of this covalent modification has not been investigated. Here we identify by mass spectrometry six lysine residues of SopB that are mono-ubiquitinated. Substitution of these six lysine residues with arginine, SopB-K6R, almost completely eliminated SopB ubiquitination. We found that ubiquitination does not affect SopB stability or membrane association, or SopB-dependent events in SCV biogenesis. However, two spatially and temporally distinct events are dependent on ubiquitination, downregulation of SopB activity at the plasma membrane and prolonged retention of SopB on the SCV. Activation of the mammalian pro-survival kinase Akt/PKB, a downstream target of SopB, was intensified and prolonged after infection with the SopB-K6R mutant. At later times, fewer SCV were decorated with SopB-K6R compared with SopB. Instead SopB-K6R was present as discrete vesicles spread diffusely throughout the cell. Altogether, our data show that ubiquitination of SopB is not related to its intracellular stability but rather regulates its enzymatic activity at the plasma membrane and intracellular localization.  相似文献   

20.
Intracellular replication of Salmonella enterica requires the formation of a unique organelle termed Salmonella-containing vacuole (SCV). The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2-T3SS) has a crucial role in the formation and maintenance of the SCV. The SPI2-T3SS translocates a large number of effector proteins that interfere with host cell functions such as microtubule-dependent transport. We investigated the function of the effector SseF and observed that this protein is required to maintain the SCV in a juxtanuclear position in infected epithelial cells. The formation of juxtanuclear clusters of replicating Salmonella required the recruitment of dynein to the SCV but SseF-deficient strains were highly reduced in dynein recruitment to the SCV. We performed a functional dissection of SseF and defined domains that were important for translocation and the specific effector functions of this protein. Of particular importance was a hydrophobic domain in the C-terminal half that contains three putative transmembrane (TM) helices. Deletion of one of these TM helices ablated the effector functions of SseF. We observed that this domain was essential for the proper intracellular positioning of the SCV to a juxtanuclear, Golgi-associated localization. These data show that SseF, in concert with the effector proteins SifA and SseG mediate the precise positioning of the SCV by differentially modulating the recruitment of microtubule motor proteins to the SCV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号