首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的: 构建具有绿色荧光蛋白(copGFP)和嘌呤霉素抗性基因(PuroR)融合表达双筛选标记的慢病毒过表达载体,检测其嘌呤霉素抗性和绿色荧光蛋白表达的特性。方法: 从pCDH-CMV-MCS-copGFP载体中扩增copGFP编码区DNA序列,从pLKO.1载体中扩增PuroR编码区DNA序列,运用重组PCR方法,扩增copGFP与PuroR基因融合编码序列并克隆至经BamH Ⅰ+Sal Ⅰ双酶切的pCDH-CMV-MCS-copGFP载体片段中,构建含copGFP和PuroR融合表达双筛选标记的慢病毒过表达载体;载体的融合标签序列进行测序确证;将该载体用辅助包装质粒PLP1、PLP2、VSVG在293T细胞中包装成慢病毒后感染肝癌细胞MHCC97H,检测感染细胞对嘌呤霉素的抵抗作用以及绿色荧光蛋白的表达情况;为验证该载体表达外源目的基因的有效性,将Sp1编码区DNA序列插入该载体中包装成慢病毒,用对照及表达Sp1的慢病毒感染肝癌细胞MHCC97H,感染细胞经1 mg/ml嘌呤霉素筛选7 d后获得稳定感染细胞株,提取稳定感染细胞的总RNA及总蛋白,分别运用RT-qPCR和Western blot方法检测Sp1在对照及表达Sp1的慢病毒感染的肝癌MHCC97H细胞中的mRNA和蛋白表达水平的差异。结果: 成功构建含copGFP和PuroR融合表达双筛选标记的慢病毒过表达载体;该载体与辅助质粒包装出的慢病毒感染肝癌细胞后,感染细胞同时具有嘌呤霉素抗性和表达绿色荧光蛋白特性;将Sp1编码序列插入该载体,包装慢病毒并肝癌细胞,Sp1 的mRNA水平对照细胞相比分别升高3.3倍,蛋白水平升高2.2倍(P<0.01)。 结论: 成功构建含copGFP和PuroR融合表达双筛选标记的慢病毒过表达载体,该载体编码的融合双标记基因具有嘌呤霉素抗性和绿色荧光蛋白表达的特性,可高水平表达长片段的目的基因。  相似文献   

2.
Puromycin N-acetyl transferase gene (pac), of which the gene product catalyzes antibiotic puromycin (an effective inhibitor of protein synthesis), has been widely used as a dominant selection marker in embryonic stem (ES) cell-mediated transgenesis. The present study is the first to report on the usefulness of puromycin for production of enhanced green fluorescent protein (EGFP) transgenic piglets after somatic cell cloning and embryo transfer. Somatic cells isolated from porcine fetuses at 73 days of gestation were immediately electroporated with a transgene (pCAG-EGFPac) carrying both EGFP cDNA and pac. This procedure aims to avoid aging effects thought to be generated during cell culture. The recombinant cells were selected with puromycin at a low concentration (2 microg/ml), cultured for 7 days, and then screened for EGFP expression before somatic cell cloning. The manipulated embryos were transplanted into the oviducts of 14 foster mother sows. Four of the foster sows became pregnant and nine piglets were delivered. Of the nine piglets, eight died shortly after birth and one grew healthy after weaning. Results indicate that puromycin can be used for the selection of recombinant cells from noncultured cells, and moreover, may confer the production of genetically engineered newborns via nuclear transfer techniques in pigs.  相似文献   

3.
Selection markers are common genetic elements used in recombinant cell line development. While several selection systems exist for use in mammalian cell lines, no previous study has comprehensively evaluated their performance in the isolation of recombinant populations and cell lines. Here we examine four antibiotics, hygromycin B, neomycin, puromycin, and Zeocin™, and their corresponding selector genes, using a green fluorescent protein (GFP) as a reporter in two model cell lines, HT1080 and HEK293. We identify Zeocin™ as the best selection agent for cell line development in human cells. In comparison to the other selection systems, Zeocin™ is able to identify populations with higher fluorescence levels, which in turn leads to the isolation of better clonal populations and less false positives. Furthermore, Zeocin™-resistant populations exhibit better transgene stability in the absence of selection pressure compared to other selection agents. All isolated Zeocin™-resistant clones, regardless of cell type, exhibited GFP expression. By comparison, only 79% of hygromycin B-resistant, 47% of neomycin-resistant, and 14% of puromycin-resistant clones expressed GFP. Based on these results, we rank Zeocin™ > hygromycin B ∼ puromycin > neomycin for cell line development in human cells. Furthermore, this study demonstrates that selection marker choice does indeed impact cell line development.  相似文献   

4.
Sánchez-Puig JM  Blasco R 《Gene》2000,257(1):57-65
The antibiotic puromycin, an inhibitor of protein synthesis, was shown to inhibit vaccinia virus (VV) replication. We evaluated the use of puromycin-resistance (pac) gene as a selectable marker in VV. A recombinant vaccinia virus expressing pac (VV-pac) under the control of a viral early/late promoter was constructed and characterized. VV-pac grew in the presence of puromycin at concentrations that were inhibitory for the parental VV and toxic for the cells. Isolation of recombinant VV usually relies on plaque purification under selective conditions. Because virus plaquing was not feasible under inhibitory puromycin concentration, a protocol based on serial passage of virus was devised. The usefulness of this procedure in selecting pac expressing viruses was tested by isolating a recombinant VV.  相似文献   

5.
Avian reovirus capsid protein σB was genetically fused with a histidine (His6) tag and a UV-optimized green fluorescent protein (GFPuv) and expressed in Sf-9 cells. The fluorescence of GFPuv allowed for easy identification of protein localization and revealed that the fusion protein was quite stable in the cell culture. The fluorescence intensity (FI) exhibited a linear relationship (r2 = 0.93) with the recombinant protein yield and therefore allowed for on-line tracking of the expression profile, which revealed an extremely high maximum yield of 70 μg per 106 cells. The recombinant protein was purified via immobilized metal affinity chromatography (IMAC) and a high purity (85%) was achieved in one step. During the purification, the fluorescence again enabled qualitative and quantitative monitoring of when and how much the desired product was eluted. The GFP-tagging strategy eliminated the need for cumbersome and time-consuming assays (e.g. Western blot or ELISA) for product analysis, thus GFP is an effective non-invasive on-line marker for the expression and purification of recombinant proteins in the baculovirus expression system.  相似文献   

6.
The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant membrane proteins. By fusing green fluorescent protein and an erythromycin resistance marker (ErmC) to the C-terminus of a target protein, one simultaneously selects for variants with enhanced expression (increased erythromycin resistance) and correct folding (green fluorescent protein fluorescence). Three evolved hosts, displaying 2- to 8-fold increased expression of a plethora of proteins, were fully sequenced and shown to carry single-site mutations in the nisK gene. NisK is the sensor protein of a two-component regulatory system that directs nisin-A-mediated expression. The levels of recombinant membrane proteins were increased in the evolved strains, and in some cases their folding states were improved. The generality and simplicity of our approach allow rapid improvements of protein production yields by directed evolution in a high-throughput way.  相似文献   

7.
The fusion protein of green fluorescent protein (GFP) and human interleukin-2 (hIL-2) was produced in insect Trichoplusia ni larvae infected with recombinant baculovirus derived from the Autographa californica nuclear polyhedrosis virus (AcNPV). This fusion protein was composed of a metal ion binding site (His)6 for rapid one-step purification using immobilized metal affinity chromatography (IMAC), UV-optimized GFP (GFPuv), enterokinase cleavage site for recovering hIL-2 from purified fusion protein, and hIL-2 protein. The additional histidine residues on fusion protein enabled the efficient purification of fusion protein based on immobilized metal affinity chromatography. In addition to advantages of GFP as a fusion marker, GFP was able to be used as a selectable purification marker; we easily determined the correct purified fusion protein sample fraction by simply detecting GFP fluorescence.  相似文献   

8.
We have developed a new method for the transgenesis of the silkworm, Bombyx mori. This method couples the use of recombinant baculoviruses with the use of the piggyBac transposable element. One recombinant AcNPV, designated the helper virus, is designed to express the piggyBac transposase under the control of the Drosophila hsp70 promoter. Another recombinant AcNPV encoded the gene to be incorporated into the silkworm genome, in this case a green fluorescent protein (GFP) gene, under the control of B. mori actin A3 promoter and franked by the piggyBac inverted terminal repeats. Preblastoderm eggs were inoculated with a fine needle coated with a mixture of these two recombinant baculoviruses. Most of the inoculated larvae hatched and a high proportion of the newly hatched G0 larvae expressed the GFP marker. Transgenesis was confirmed by Southern blot analysis of G1 insects, sequencing the insertion site junctions isolated by inverse PCR, and the marker segregated in Mendelian fashion, as evidenced by the appearance of green fluorescence in G2 insects. Thus, transgenic silkworms were easily and efficiently obtained using this new method.  相似文献   

9.
为了研究NAG7基因编码产物的特性和在活细胞内定位与表达,首先利用生物信息学分析NAG7编码蛋白的一般性质并预测其定位,再通过构建增强型绿色荧光蛋白(Enhance green fluorescent protein,EGFP)与NAG7融合基因的真核表达载体pEGFP-C2-NAG7,通过脂质体介导分别转染非洲绿猴肾细胞系COS7和人鼻咽癌细胞系HNE1,瞬时表达后荧光显微镜观察NAG7基因编码蛋白的活细胞内定位及表达,研究结果表明NAG7的编码产物可以COS7细胞中高表达并定位于细胞浆,而在HNE1细胞中虽也定位于胸浆,但仅有极少数细胞存在表达,因此NAG7编码产物在HNE1中的表达差异是否是NPC发生的原因之一有待深入研究。  相似文献   

10.
Chen G  Ward BM  Yu KH  Chinchar VG  Robert J 《Journal of virology》2011,85(21):11131-11138
To better assess the roles of frog virus 3 (FV3; genus Ranavirus, family Iridoviridae) genes in virulence and immune evasion, we have developed a reliable and efficient method to systematically knock out (KO) putative virulence genes by site-specific integration into the FV3 genome. Our approach utilizes a dual selection marker consisting of the puromycin resistance gene fused in frame with the enhanced green fluorescent protein (EGFP) reporter (Puro-EGFP cassette) under the control of the FV3 immediate-early (IE) 18K promoter. By successive rounds of selection for puromycin resistance and GFP expression, we have successfully constructed three recombinant viruses. In one, a "knock-in" mutant was created by inserting the Puro-EGFP cassette into a noncoding region of the FV3 genome (FV3-Puro/GFP). In the remaining two, KO mutants were constructed by replacement of the truncated viral homolog of eIF-2α (FV3-ΔvIF-2α) or the 18K IE gene (FV3-Δ18K) with the Puro-EGFP cassette. The specificity of recombination and the clonality of each mutant were confirmed by PCR, sequencing, and immunofluorescence microscopy. Viral replication of each recombinant in cell culture was similar to that of parental FV3; however, infection in Xenopus laevis tadpoles revealed that FV3-ΔvIF-2α and FV3-Δ18K replicated less and resulted in lower mortality than did GFP-FV3 and wild-type FV3. Our results suggest that 18K, which is conserved in all ranaviruses, and the truncated vIF-2α gene contribute to virulence. In addition, our study describes a powerful methodology that lays the foundation for the discovery of potentially new ranaviral genes involved in virulence and immune escape.  相似文献   

11.
The Drosophila Schneider S2 (S2) Expression System enables expression of recombinant proteins constitutively, as well as inductively. This system can establish both transient and stable transformants with various selection markers. The generation of stable cell lines for increased expression or large scale expression of the desired protein is currently accomplished by cotransfection of both the expression and selection vectors. The selection vectors, pCoHYGRO and pCoBLAST, are commercially available using hygromycin-B and blasticidin S, respectively. Recently, we generated a plasmid, pCoPURO, for selection of transfected S2 cells using puromycin, which allows significant acceleration of the selection time. Although co-transfection of the selection marker with the plasmid for heterologous protein expression is functional in stable expression at short culture periods, the expression levels of stable transformants are continuously decreased during long culture times. To overcome this limitation, we generated pMT-PURO, a new plasmid that contains both the expression cassette and puromycin selection marker in a single plasmid. This system allows rapid selection and maintenance of the transformed S2 lines for extended culture periods.  相似文献   

12.
用转座穿梭系统构建了携带绿色荧光蛋白基因(gfp)的重组棉铃虫核型多角体病毒rHa-FGP,以其多角体添食感染棉铃虫3龄幼虫,室内饲养3代,各代均可见自然光下发绿色荧光的棉铃虫幼虫,其中子代不再重复感染。F0、F1、F2代发绿色荧光的棉铃虫幼虫所占百分比分别为34%、20%、8%。提取虫体内的病毒多角体DNA,以PCR和斑点杂交鉴定表明,gfp不仅在亲代棉铃虫体内正常表达,而且在子代幼虫中表达,HaNPV通过卵实现了垂直传播。  相似文献   

13.
Collectively, the species Bacillus thuringiensis, Bacillus cereus, and Bacillus anthracis represent microorganisms of high economic, medical, and biodefense importance. Although the genetic correlation and pathogenic characteristics have been extensively dissected, the ecological properties of these three species in their natural environments remain poorly understood. Thus, a tractable marker for detecting these bacteria under specific environmental and physiological conditions is a valuable tool. With this purpose, a plasmid (pAD43-25) carrying a functional gfp gene sequence (gfpmut3A) was introduced into the wild-type strain Bacillus thuringiensis subsp. kurstaki S76, which bears approximately 11 plasmids, allowing constitutive synthesis of green fluorescent protein (GFP) during vegetative growth (strain S76GFP+). Additionally, this vector was transferred to a plasmid-cured (Cry-) B. thuringiensis host. Bright green cells were detected by fluorescence microscopy in both recombinants by 2 h after inoculation in liquid medium and could be seen throughout the remaining cultivation time until complete sporulation was accomplished. For strain S76GFP+ protein profile and plasmid DNA analyses indicate, respectively, that this recombinant maintained Cry proteins expression and resident plasmid outline. Thus, in addition to the potential of strain S76GFP+ as a marker organism in bacteria-plant interaction studies, the production and stability of active GFPmut3a make this unique expression system a useful experimental model to study adaptive changes of host-plasmid as well as plasmid-plasmid relationships in a population of cells stressed by the production of a recombinant protein.  相似文献   

14.
为了用绿色荧光蛋白标记观察人类无精症相关基因ZNF230在Cos7细胞中的蛋白质表达及定位,用PCR方法扩增得到突变的人和小鼠mt ZNF230和mt znf230基因,使其3′端的终止密码TGA突变为TGG,并装入T 载体,双酶切后通过定向克隆将其与真核表达载体pEGFP N1的绿色荧光蛋白(greenfluorescenceprotein,GFP)基因融合,构建了ZNF230—荧光蛋白融合基因表达载体。然后经真核表达质粒-脂质体介导,导入Cos7细胞系。荧光显微镜观察显示:在空白载体pEGFP N1转染的Cos细胞中荧光布满整个细胞,而在转染阳性载体pEGFP ZNF230和pEGFP znf230的Cos细胞中荧光主要聚集在细胞核中。表明转染的Cos细胞系能高效表达人ZNF230和小鼠znf230蛋白,ZNF230基因表达的蛋白定位于细胞核内。  相似文献   

15.
增强型绿色荧光蛋白(EGFP, enhanced green fluorescent protein)、myc抗原和6×His已在众多真核表达载体中用作重组蛋白的表达标记,EGFP能发出的绿色荧光,myc抗原能用相应的抗体检测,6×His能被相应的树脂特异吸附。但目前为止,没有一个质粒表达载体能够同时整合三者的功能。本研究构建了一个能够同时整合EGFP、myc抗原和6×His功能的新型真核质粒表达载体,我们将其命名为pcDNA6/myc-his-EGFP B。值得注意的是,为确保目的基因与EGFP基因融合表达后,融合表达产物各组成部分能够保持原有的生物活性,我们运用LINKER程序在EGFP基因的5'端设计了一段编码八肽的连接DNA序列。将一段含有人白细胞介素2(IL-2, human interleukin 2)信号肽编码序列的基因亚克隆进pcDNA6/myc-his-EGFP B的多克隆位点中,使之与EGFP、myc抗原和6×His融合表达,构建成质粒pMHES。用pcDNA6/myc-his-EGFP B和pMHES转染2.2.15细胞,48 h后成功观察到绿色荧光;用pcDNA6/myc-his-EGFP B尾静脉注射Balb/c小鼠,8 h后在小鼠肝脏冰冻切片中同样观察到绿色荧光。用同源建模软件Modeller8V2模拟IL-2与EGFP、myc抗原和6×His融合表达产物的三维结构,结果表明:IL-2、EGFP、myc和6×His各部分互不干扰,连接八肽具有一定的柔性。以上结果表明pcDNA6/myc-his-EGFP B可望作为外源基因在哺乳动物细胞中表达研究和基因治疗的新型载体。  相似文献   

16.
The ubiquitin-proteasome system (UPS) is responsible for turnover of most cellular proteins in eukaryotes. Protein degradation by the UPS serves quality control and regulatory functions. Proteasome inhibition showed great promise in effectively treating cancer and restenosis. UPS dysfunction in cardiac hypertrophy and failure has recently been suspected but remains to be investigated. A system capable of monitoring dynamic changes in proteolytic function of the UPS in cardiac myocytes in situ would no doubt benefit significantly efforts to decipher the pathogenic significance of UPS dysfunction in the heart and to evaluate the effect of proteasome inhibition on cardiac myocytes. We successfully established such a system in cultured cardiac myocytes by delivering and expressing a modified green fluorescence protein (GFPu) gene using recombinant adenoviruses. GFPu contains a ubiquitination signal sequence fused to the COOH terminus. Fluorescence microscopy and Western blots revealed that protein abundance of modified green fluorescent protein (GFPu), but not wild-type green fluorescent protein, in cultured cardiac myocytes was incrementally increased when function of the proteasomes was inhibited in various degrees by specific inhibitors. The increase in GFPu protein levels and fluorescence intensity is paralleled by a decrease in the in vitro peptidase activity of the proteasomes. Our results demonstrate that GFPu can be used as a surrogate marker to monitor dynamic changes in proteolytic function of the UPS in cardiac myocytes in situ. Application of this novel system reveals that moderate levels of H2O2, a reactive oxygen species generator, impair proteolytic function of the UPS in cultured cardiac myocytes.  相似文献   

17.
Grass carp reovirus(GCRV),a disaster agent to aquatic animals,belongs to Genus Aquareovirus of family Reoviridea.Sequence analysis revealed GCRV genome segment 8(s8) was 1 296 bp nucleotides in length encoding an inner capsid protein VP6 of about 43kDa.To obtain in vitro non-fusion expression of a GCRV VP6 protein containing a molecular of fluorescence reporter,the recombinant baculovirus,which contained the GCRVs8 and eGFP(enhanced green fluorescence protein) genes,was constructed by using the Bac-to-Bac insect expression system.In this study,the whole GCRVs8 and eGFP genes,amplified by PCR,were constructed into a pFastBacDual vector under polyhedron(PH) and p10 promoters,respectively.The constructed dual recombinant plasmid(pFbDGCRVs8/eGFP) was transformed into DH10Bac cells to obtain recombinant Bacmid(AcGCRVs8/eGFP) by transposition.Finally,the recombinant bacluovirus(vAcGCRVs8/eGFP) was obtained from transfected Sf9 insect cells.The green fluorescence that was expressed by transfected Sf9 cells was initially observed 3 days post transfection,and gradually enhanced and extended around 5 days culture in P1(Passage1) stock.The stable high level expression of recombinant protein was observed in P2 and subsequent passage budding virus(BV) stock.Additionally,PCR amplification from P1 and amplified P2 BV stock further confirmed the validity of the dual-recombinant baculovirus.Our results provide a foundation for expression and assembly of the GCRV structural protein in vitro.  相似文献   

18.
利用噬菌体衣壳蛋白MS2和带有序列特异性茎环结构(含有MS2蛋白结合位点)的RNA之间的高度亲和力,对外源性入血管紧张素l型受体(angiotensin II receptor type1,AGTRl)mRNA3’端非翻译区(3'untranslated region,3’UTR)片段进行红色荧光标记,进而在活细胞(HeLa)内研究该mRNA片段的应激生物学行为。通过在pSG5空载体质粒上先后插入两个双链DNA目的片段AGTR1-3qATR和24×MS2,构建重组质粒pSG5/AGTR1—3‘UTR/24×MS2,并将该质粒与重组质粒pERFP/MS2和pEGFP/C1-G3BP共转染入Hela细胞。荧光显微成像结果显示,AGTR1-3UTR-24×MS2 mNA片段能够携带具有入核信号的MS2-RFP融合蛋白离开胞核进入胞浆,而且在亚砷酸盐刺激下,红色荧光标记的AGTR1-3'UTR-24×MS2 mRNA;4段可在胞浆中形成与应激蛋白G3BP—GFP共定位的颗粒。该结果表明,针对AGTR1-3‘UTR片段的MS2-RFP荧光标记系统构建成功,该荧光标记系统能有效避免假阳性的荧光信号。在细胞受到氧化应激时,AGTR1-3’UTR会被招募至胞浆中的应激颗粒结构中,启示了AGTR1-3'UTR区域对于调控AGTR1 mRNA在细胞内的应激定位具有重要作用。  相似文献   

19.
Transfected mammalian cells can be used for the production of fully processed recombinant proteins for medical and industrial purposes. However, the isolation of high-producing clones is traditionally time-consuming. Therefore, we developed a high-throughput screening method to reduce the time and effort required to isolate high-producing cells. This involved the construction of an expression vector containing the amplifiable gene metallothionein (MT), fused in-frame to green fluorescent protein (GFP). The fusion gene (MTGFP) confers metal resistance similar to that of the wild-type metallothionein and expression can be monitored using either flow cytometry or a fluorometer to measure green fluorescence. Expression of MTGFP acted as a dominant selectable marker allowing rapid and more efficient selection of clones at defined metal concentrations than with the antibiotic G418. Cells harboring MTGFP responded to increasing metal concentrations with a corresponding increase in fluorescence. There was also a corresponding increase in recombinant protein production, indicating that MTGFP could be used as a selectable and amplifiable gene for the coexpression of foreign genes. Using our expression vector encoding MTGFP, we demonstrate a high-throughput clonal selection protocol for the rapid isolation of high-producing clones from transfected CHO cells. We were able to isolate cell lines reaching specific productivities of >10 microg hGH/10(6) cells/day within 4 weeks of transfection. The advantage of this method is that it can be easily adapted for automated procedures using robotic handling systems.  相似文献   

20.
Schmallenberg virus (SBV) is a Culicoides-transmitted orthobunyavirus that poses a threat to susceptible livestock species such as cattle, sheep and goats. The nucleocapsid (N) protein of SBV is an ideal diagnostic antigen for the detection of viral infection. In this study, a stable Vero cell line, Vero-EGFP-SBV-N, constitutively expressing the SBV-N protein was established using a lentivirus system combined with puromycin selection. This cell line spontaneously emitted green fluorescent signals distributed throughout the cytoplasm, in which the expression of SBV-N fusion protein was confirmed by western blot analysis. The expression of SBV-N protein in Vero-EGFP-SBV-N cells was stable for more than fifty passages without puromycin pressure. The SBV-N fusion protein contained both an N-terminal enhanced green fluorescent protein (EGFP) tag and a C-terminal hexa-histidine (6 × His) tag, by which the N protein was successfully purified using Ni–NTA affinity chromatography. The cell line was further demonstrated to be reactive with SBV antisera and an anti-SBV monoclonal antibody in indirect immunofluorescence assays. Taken together, our results demonstrate that the Vero-EGFP-SBV-N cell line has potential for application in the serological diagnosis of SBV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号