首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bioactive phospholipid, lysophosphatidic acid (LPA), acting through at least five distinct receptors LPA1–LPA5, plays important roles in numerous biological processes. Here we report that LPA induces osteoblastic differentiation of human mesenchymal stem cells hMSC‐TERT. We find that hMSC‐TERT mostly express two LPA receptors, LPA1 and LPA4, and undergo osteoblastic differentiation in serum‐containing medium. Inhibition of LPA1 with Ki16425 completely abrogates osteogenesis, indicating that this process is mediated by LPA in the serum through activation of LPA1. In contrast to LPA1, down‐regulation of LPA4 expression with shRNA significantly increases osteogenesis, suggesting that this receptor normally exerts negative effects on differentiation. Mechanistically, we find that in hMSC‐TERT, LPA induces a rise in both cAMP and Ca2+. The rise in Ca2+ is completely abolished by Ki16425, whereas LPA‐mediated cAMP increase is not sensitive to Ki16425. To test if LPA signaling pathways controlling osteogenesis in vitro translate into animal physiology, we evaluated the bones of LPA4‐deficient mice. Consistent with the ability of LPA4 to inhibit osteoblastic differentiation of stem cells, LPA4‐deficient mice have increased trabecular bone volume, number, and thickness. J. Cell. Biochem. 109: 794–800, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

2.
There is evidence that the overall effects of prostaglandin E(2) (PGE(2)) on human platelet function are the consequence of a balance between promotory effects of PGE(2) acting at the EP3 receptor and inhibitory effects acting at the EP4 receptor, with no role for the IP receptor. Another prostaglandin that has been reported to affect platelet function is prostaglandin E(1) (PGE(1)), however the receptors that mediate its actions on platelet function have not been fully defined. Here we have used measurements of platelet aggregation and P-selectin expression induced by the thromboxane A(2) mimetic U46619 to compare the effects of PGE(1) and PGE(2) on platelet function. Their effects on vasodilator-stimulated phosphoprotein (VASP) phosphorylation, as a marker of cAMP, were also determined. We also investigated the ability of the selective prostanoid receptor antagonists CAY10441 (IP antagonist), DG-041 (EP3 antagonist) and ONO-AE3-208 (EP4 antagonist) to modify the effects of the prostaglandins on platelet function. The results obtained confirm that PGE(2) interacts with EP3 and EP4 receptors, but not IP receptors. In contrast PGE(1) interacts with EP3 and IP receptors, but not EP4 receptors. In both cases the overall effects on platelet function reflect the balance between promotory and inhibitory effects at receptors that have opposite effects on adenylate cyclase.  相似文献   

3.
4.
5.
Bacterial lipopolysaccharide (LPS)-mediated immune responses, including activation of monocytes, macrophages, and endothelial cells, play an important role in the pathogenesis of Gram-negative bacteria-induced sepsis syndrome. Activation of NF-kappaB is thought to be required for cytokine release from LPS-responsive cells, a critical step for endotoxic effects. Here we investigated the role and involvement of interleukin-1 (IL-1) and tumor necrosis factor (TNF-alpha) signal transducer molecules in LPS signaling in human dermal microvessel endothelial cells (HDMEC) and THP-1 monocytic cells. LPS stimulation of HDMEC and THP-1 cells initiated an IL-1 receptor-like NF-kappaB signaling cascade. In transient cotransfection experiments, dominant negative mutants of the IL-1 signaling pathway, including MyD88, IRAK, IRAK2, and TRAF6 inhibited both IL-1- and LPS-induced NF-kappaB-luciferase activity. LPS-induced NF-kappaB activation was not inhibited by a dominant negative mutant of TRAF2 that is involved in TNF signaling. LPS-induced activation of NF-kappaB-responsive reporter gene was not inhibited by IL-1 receptor antagonist. TLR2 and TLR4 were expressed on the cell surface of HDMEC and THP-1 cells. These findings suggest that a signal transduction molecule in the LPS receptor complex may belong to the IL-1 receptor/toll-like receptor (TLR) super family, and the LPS signaling cascade uses an analogous molecular framework for signaling as IL-1 in mononuclear phagocytes and endothelial cells.  相似文献   

6.
7.
The serum-derived phospholipid growth factor, lysophosphatidate (LPA), activates cells through the EDG family of G protein-coupled receptors. The present study investigated mechanisms by which dephosphorylation of exogenous LPA by lipid phosphate phosphatase-1 (LPP-1) controls cell signaling. Overexpressing LPP-1 decreased the net specific cell association of LPA with Rat2 fibroblasts by approximately 50% at 37 degrees C when less than 10% of LPA was dephosphorylated. This attenuated cell activation as indicated by diminished responses, including cAMP, Ca(2+), activation of phospholipase D and ERK, DNA synthesis, and cell division. Conversely, decreasing LPP-1 expression increased net LPA association, ERK stimulation, and DNA synthesis. Whereas changing LPP-1 expression did not alter the apparent K(d) and B(max) for LPA binding at 4 degrees C, increasing Ca(2+) from 0 to 50 micrometer increased the K(d) from 40 to 900 nm. Decreasing extracellular Ca(2+) from 1.8 mm to 10 micrometer increased LPA binding by 20-fold, shifting the threshold for ERK activation to the nanomolar range. Hence the Ca(2+) dependence of the apparent K(d) values explains the long-standing discrepancy of why micromolar LPA is often needed to activate cells at physiological Ca(2+) levels. In addition, the work demonstrates that LPP-1 can regulate specific LPA association with cells without significantly depleting bulk LPA concentrations in the extracellular medium. This identifies a novel mechanism for controlling EDG-2 receptor activation.  相似文献   

8.
9.
In these experiments we have examined the effects of PGE1, PGE2, PGF1alpha and PGF2alpha on synovial perfusion in the normal canine synovial microcirculation. The effects of the drugs on synovial perfusion were determined indirectly from the changes produced in the rate of clearance of 133Xenon from the joint by their intra-articular injection. Prostaglandins PGE1 and PGE2 were found to be strongly vasodilator with PGE1 being the more active. PGF1alpha appeared to have little or no vasoactive properties in doses up to 1 ugm. (2.8 times 10(-5M)) in our preparation while PGF2alpha was vasodilator at this high dosage only. Neither SC19920 nor diphloretin phosphate antagonished the effects of PGE1 in these experiments.  相似文献   

10.
11.
Ginseng has been shown to have memory-improving effects in human. However, little is known about the active components and the molecular mechanisms underlying its effects. Recently, we isolated novel lysophosphatidic acids (LPAs)-ginseng protein complex derived from ginseng, gintonin. Gintonin activates G protein-coupled LPA receptors with high affinity. Gintonin activated Ca2+-activated Clchannels in Xenopus oocytes through the activation of endogenous LPA receptor. In the present study, we investigated whether the activation of LPA receptor by gintonin is coupled to the regulation of N-methyl-d-aspartic acid (NMDA) receptor channel activity in Xenopus oocytes expressing rat NMDA receptors. The NMDA receptor-mediated ion current (I NMDA ) was measured using the two-electrode voltage-clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, gintonin enhanced I NMDA in a concentration-dependent manner. Gintonin-mediated I NMDA enhancement was blocked by Ki16425, an LPA1/3 receptor antagonist. Gintonin action was blocked by a PLC inhibitor, IP3 receptor antagonist, Ca2+ chelator, and a tyrosine kinase inhibitor. The site-directed mutation of Ser1308 of the NMDA receptor, which is phosphorylated by protein kinase C (PKC), to an Ala residue, or co-expression of receptor protein tyrosine phosphatase with the NMDA receptor attenuated gintonin action. Moreover, gintonin treatment elicited a transient elevation of [Ca2+]i in cultured hippocampal neurons and elevated longterm potentiation (LTP) in both concentration-dependent manners in rat hippocampal slices. Gintonin-mediated LTP induction was abolished by Ki16425. These results indicate that gintonin-mediated I NMDA potentiation and LTP induction in the hippocampus via the activation of LPA receptor might be responsible for ginseng-mediated improvement of memory-related brain functions.  相似文献   

12.
13.
14.
15.
16.
We found that centrally administered prostaglandin (PG) E(2) exhibited anxiolytic-like activity in the elevated plus-maze and open field test in mice. Agonists selective for EP(1) and EP(4) receptors, among four receptor subtypes for PGE(2), mimicked the anxiolytic-like activity of PGE(2). The anxiolytic-like activity of PGE(2) was blocked by an EP(1) or EP(4) antagonist, as well as in EP(4) but not EP(1) knockout mice. Central activation of either EP(1) or EP(4) receptors resulted in anxiolytic-like activity. The PGE(2)-induced anxiolytic-like activity was inhibited by antagonists for serotonin 5-HT(1A), dopamine D(1) and GABA(A) receptors. Taken together, PGE(2) exhibits anxiolytic-like activity via EP(1) and EP(4) receptors, with downstream involvement of 5-HT(1A), D(1) and GABA(A) receptor systems.  相似文献   

17.
18.
N-methyl-d-aspartate receptors (NMDARs) mediate excitatory synaptic transmission in the brain. Here we demonstrate interactions between the NR2A and NR2B subunits of NMDARs with flotillin-1 (flot-1), a lipid raft-associated protein. When mapped, analogous regions in the far distal C-termini of NR2A and NR2B mediate binding to flot-1, and the prohibitin homology domain of flot-1 contains binding sites for NR2A and NR2B. Although NR2B can also directly bind to flot-2 via a separate region of its distal C-terminus, NMDARs were significantly more colocalized with flot-1 than flot-2 in cultured hippocampal neurons. Overall, this study defines a novel interaction between NMDARs and flotillins.

Structured summary

MINT-7013094: NR2A (uniprotkb:Q00959), NR2B (uniprotkb:Q00960) and Flot2 (uniprotkb:Q9Z2S9) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013147: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)MINT-7013189: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013033: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013178: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013197, MINT-7013210: NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) physically interact (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by anti bait coimmunoprecipitation (MI:0006)MINT-7013002: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013117: Flot1 (uniprotkb:Q9Z1E1), NR2B (uniprotkb:Q00960) and NR2A (uniprotkb:Q00959) colocalize (MI:0403) by fluorescence microscopy (MI:0416)MINT-7013171: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by anti bait coimmunoprecipitation (MI:0006)MINT-7013017: NR2A (uniprotkb:Q00959) physically interacts (MI:0218) with Flot1 (uniprotkb:O08917) by two hybrid (MI:0018)MINT-7013054: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot1 (uniprotkb:Q9Z1E1) by two hybrid (MI:0018)MINT-7013129: Flot1 (uniprotkb:Q9Z1E1) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013155: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2B (uniprotkb:Q00960) by anti bait coimmunoprecipitation (MI:0006)MINT-7013074: NR2B (uniprotkb:Q00960) physically interacts (MI:0218) with Flot2 (uniprotkb:Q9Z2S9) by two hybrid (MI:0018)MINT-7013162: NR1 (uniprotkb:P35439) physically interacts (MI:0218) with NR2A (uniprotkb:Q00959) by anti bait coimmunoprecipitation (MI:0006)  相似文献   

19.
Abstract

Purpose: Previous studies have found non-CB1 non-CB2 G-protein-coupled receptors in rodents that are activated by the aminoalkylindole cannabinoid agonist WIN55212-2. This work obtained evidence for the presence or absence of similar receptors in the brains of other mammals, birds and amphibians.

Materials and methods: Antagonism of the stimulation of [35S]GTPγS binding by WIN55212-2 and CP55940 was assessed in multiple CNS regions of rat and canine, and in whole brain membranes from shrew, pigeon, frog and newt. A bioinformatics approach searched for orthologs of GRP3, GPR6, and GPR12 (closely related to cannabinoid receptors) in the genomes of these or related species. Orthologs were examined for amino acid motifs known to impart functionality to receptors.

Results: In mammals and pigeon, but not amphibians, a significant fraction of the stimulation of [35S]GTPγS binding by WIN55212-2 was not blocked by the CB1 antagonist SR141716A. BLAST searches found that GPR3 was restricted to mammals. GPR12 orthologs existed in all species, and they shared identical amino acid motifs. GPR6 orthologs existed all species, but with significant departures in the identity of some critical amino acids in bird, more so in amphibian.

Conclusions: The portion of WIN55212-2-stimulated [35S]GTPγS binding that was antagonized by SR141716A was consistent with stimulation via CB1 receptors, indicating that antagonist-insensitive activity was via a different G-protein coupled receptor. Pharmacological evidence of this receptor was found in the brains of mammals and pigeon, but not frog or newt. Bioinfomatics results implicate GPR6 as a possible candidate for the additional WIN55212-2-sensitive receptor.  相似文献   

20.
Cytokines, PGE2 and endotoxic fever: a re-assessment   总被引:4,自引:0,他引:4  
The innate immune system serves as the first line of host defense against the deleterious effects of invading infectious pathogens. Fever is the hallmark among the defense mechanisms evoked by the entry into the body of such pathogens. The conventional view of the steps that lead to fever production is that they begin with the biosynthesis of pyrogenic cytokines by mononuclear phagocytes stimulated by the pathogens, their release into the circulation and transport to the thermoregulatory center in the preoptic area (POA) of the anterior hypothalamus, and their induction there of cyclooxygenase (COX)-2-dependent prostaglandin (PG)E(2), the putative final mediator of the febrile response. But data accumulated over the past 5 years have gradually challenged this classical concept, due mostly to the temporal incompatibility of the newer findings with this concatenation of events. Thus, the former studies generally overlooked that the production of cytokines and the transduction of their pyrogenic signals into fever-mediating PGE(2) proceed at relatively slow rates, significantly slower certainly than the onset latency of fever produced by the i.v. injection of bacterial endotoxic lipopolysaccharides (LPS). Here, we review the conflicts between the earlier and the more recent findings and summarize new data that reconcile many of the contradictions. A unified model based on these data explicating the generation and maintenance of the febrile response is presented. It postulates that the steps in the production of LPS fever occur in the following sequence: the immediate activation by LPS of the complement (C) cascade, the stimulation by the anaphylatoxic C component C5a of Kupffer cells, their consequent, virtually instantaneous release of PGE(2), its excitation of hepatic vagal afferents, their transmission of the induced signals to the POA via the ventral noradrenergic bundle, and the activation by the thus, locally released norepinephrine (NE) of neural alpha(1)- and glial alpha(2)-adrenoceptors. The activation of the first causes an immediate, PGE(2)-independent rise in core temperature (T(c)) [the early phase of fever; an antioxidant-sensitive PGE(2) rise, however, accompanies this first phase], and of the second a delayed, PGE(2)-dependent T(c) rise [the late phase of fever]. Meanwhile-generated pyrogenic cytokines and their consequent upregulation of blood-brain barrier cells COX-2 also contribute to the latter rise. The consecutive steps that initiate the febrile response to LPS would now appear, therefore, to occur in an order different than conceived originally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号