首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper describes a simple and rapid analytical method for the structural identification of abnormal human hemoglobins. Globin chains obtained by precipitation of erythrocyte hemolysate in cold acetone are directly analyzed by capillary zone electrophoresis in coated capillaries without any prior treatment. The speed and the high resolving power of capillary zone electrophoresis allow fast differentiation of hemoglobins with similar charges. Capillary zone electrophoretic tryptic mapping has also been performed for each globin, so that complete variant characterization can be achieved by direct comparison of the variant tryptic map with the corresponding normal one. Coupling electrophoretic data with analysis of enzymatic digests by mass spectrometry according to the "fast atom bombardment mapping" procedure makes it possible to quickly identify amino acid variations. This paper describes how the method can be applied to the characterization of common and uncommon variants and underlines the advantages and limitations of the procedure along with its potential uses in structural analysis of proteins.  相似文献   

2.
There are many well-known examples of proteins with low sequence similarity, adopting the same structural fold. This aspect of sequence-structure relationship has been extensively studied both experimentally and theoretically, however with limited success. Most of the studies consider remote homology or "sequence conservation" as the basis for their understanding. Recently "interaction energy" based network formalism (Protein Energy Networks (PENs)) was developed to understand the determinants of protein structures. In this paper we have used these PENs to investigate the common non-covalent interactions and their collective features which stabilize the TIM barrel fold. We have also developed a method of aligning PENs in order to understand the spatial conservation of interactions in the fold. We have identified key common interactions responsible for the conservation of the TIM fold, despite high sequence dissimilarity. For instance, the central beta barrel of the TIM fold is stabilized by long-range high energy electrostatic interactions and low-energy contiguous vdW interactions in certain families. The other interfaces like the helix-sheet or the helix-helix seem to be devoid of any high energy conserved interactions. Conserved interactions in the loop regions around the catalytic site of the TIM fold have also been identified, pointing out their significance in both structural and functional evolution. Based on these investigations, we have developed a novel network based phylogenetic analysis for remote homologues, which can perform better than sequence based phylogeny. Such an analysis is more meaningful from both structural and functional evolutionary perspective. We believe that the information obtained through the "interaction conservation" viewpoint and the subsequently developed method of structure network alignment, can shed new light in the fields of fold organization and de novo computational protein design.  相似文献   

3.
宁波天童拥有666.67ha森林。山林发育良好,树种繁多,巳被命名为“国家森林公园”。调查和研究天童植被与植物群落对于保存和发展这一“国家森林公园”是重要的。目前关于天童植被的系统研究尚未见报道。本文通过植物群落学的样方调查与统计,较系统地论述了天童植被的分布,并对主要植物群落的成份、结构作了分析。  相似文献   

4.
Summary Human rRNA genes contain variable regions, one of which is located in nontranscribed spacers (NTSs) closely downstream from the 3-end of the transcribed region. This polymorphism may be detected by means of blot hybridization analysis as a set of distinct restriction fragments corresponding to this part of the rRNA genes. We have analyzed DNA of 51 individuals and found eight structural NTS variants of this region; two of these were common to all individuals analyzed, and six others were found in different combinations and with different frequencies. The copy number of each variant also differed but was not less than 10–20 copies per cell. The analysis of DNA isolated from leukocytes of the members of 11 families indicated that some of the structural variants (of the NTS region) are inherited as a single Mendelian locus. We propose that rRNA genes that belong to one particular structural variant form clusters on separate chromosomes. To test this proposition, we developed a combined method, including AgNO3-staining of chromosomes, in situ hybridization, and DNA analysis with methylation-sensitive restrictases, and used it for study of persons who had methylated rRNA genes located on AgNO3-negative nucleolar organizers. It was found that in three of four cases methylated genes really belonged to one structural variant. This approach may be used for detailed localization of separate classes of NTS structural variants of human rRNA genes.  相似文献   

5.
6.

Background  

To discover remote evolutionary relationships and functional similarities between proteins, biologists rely on comparative sequence analysis, and when structures are available, on structural alignments and various measures of structural similarity. The measures/scores that have most commonly been used for this purpose include: alignment length, percent sequence identity, superposition RMSD and their different combinations. More recently, we have introduced the "Homologous core structure overlap score" (HCS) and the "Loop Hausdorff Measure" (LHM). Along with these we also consider the "gapped structural alignment score" (GSAS), which was introduced earlier by other researchers.  相似文献   

7.
The evolved properties of proteins are not limited to structure and stability but also include their propensity to undergo local conformational changes. The latter, dynamic property is related to structural cooperativity and is controlled by the folding-energy landscape. Here we demonstrate that the structural cooperativity of the ribosomal protein S6 is optimized by geometric overlap of two competing folding nuclei: they both include the central beta-strand 1. In this way, folding of one nucleus catalyzes the formation of the other, contributing to make the folding transition more concerted overall. The experimental evidence is provided by an extended set of circular permutations of S6 that allows quantitative analysis of pathway plasticity at the level of individual side chains. Because similar overlap between competing nuclei also has been discerned in other proteins, we hypothesize that the coupling of several small nuclei into extended "supernuclei" represents a general principle for propagating folding cooperativity across large structural distances.  相似文献   

8.
Protein structural alignments are generally considered as 'golden standard' for the alignment at the level of amino acid residues. In this study we have compared the quality of pairwise and multiple structural alignments of about 5900 homologous proteins from 718 families of known 3-D structures. We observe shifts in the alignment of regular secondary structural elements (helices and strands) between pairwise and multiple structural alignments. The differences between pairwise and multiple structural alignments within helical and beta-strand regions often correspond to 4 and 2 residue positions respectively. Such shifts correspond approximately to "one turn" of these regular secondary structures. We have performed manual analysis explicitly on the family of protein kinases. We note shifts of one or two turns in helix-helix alignments obtained using pairwise and multiple structural alignments. Investigations on the quality of the equivalent helix-helix, strand-strand pairs in terms of their residue side-chain accessibilities have been made. Our results indicate that the quality of the pairwise alignments is comparable to that of the multiple structural alignments and, in fact, is often better. We propose that pairwise alignment of protein structures should also be used in formulation of methods for structure prediction and evolutionary analysis.  相似文献   

9.
Phosphorylation drives the disassembly of the vimentin intermediate filament (IF) cytoskeleton at mitosis. Chromatographic analysis has suggested that phosphorylation produces a soluble vimentin tetramer, but little has been determined about the structural changes that are caused by phosphorylation or the structure of the resulting tetramer. In this study, site-directed spin labeling and electron paramagnetic resonance (SDSL-EPR) were used to examine the structural changes resulting from protein kinase A phosphorylation of vimentin IFs in vitro. EPR spectra suggest that the tetrameric species resulting from phosphorylation is the A11 configuration. EPR spectra also establish that the greatest degree of structural change was found in the linker 2 and the C-terminal half of the rod domain, despite the fact that most phosphorylation occurs in the N-terminal head domain. The phosphorylation-induced changes notably affected the proposed "trigger sequences" located in the linker 2 region, which have been hypothesized to mediate the induction of coiled-coil formation. These data are the first to document specific changes in IF structure resulting from a physiologic regulatory mechanism and provide further evidence, also generated by SDSL-EPR, that the linker regions play a key role in IF structure and regulation of assembly/disassembly.  相似文献   

10.

Background

Previous studies have shown that microRNA precursors (pre-miRNAs) have considerably more stable secondary structures than other native RNAs (tRNA, rRNA, and mRNA) and artificial RNA sequences. However, pre-miRNAs with ultra stable secondary structures have not been investigated. It is not known if there is a tendency in pre-miRNA sequences towards or against ultra stable structures? Furthermore, the relationship between the structural thermodynamic stability of pre-miRNA and their evolution remains unclear.

Results

We investigated the correlation between pre-miRNA sequence conservation and structural stability as measured by adjusted minimum folding free energies in pre-miRNAs isolated from human, mouse, and chicken. The analysis revealed that conserved and non-conserved pre-miRNA sequences had structures with similar average stabilities. However, the relatively ultra stable and unstable pre-miRNAs were more likely to be non-conserved than pre-miRNAs with moderate stability. Non-conserved pre-miRNAs had more G+C than A+U nucleotides, while conserved pre-miRNAs contained more A+U nucleotides. Notably, the U content of conserved pre-miRNAs was especially higher than that of non-conserved pre-miRNAs. Further investigations showed that conserved and non-conserved pre-miRNAs exhibited different structural element features, even though they had comparable levels of stability.

Conclusions

We proposed that there is a correlation between structural thermodynamic stability and sequence conservation for pre-miRNAs from human, mouse, and chicken genomes. Our analyses suggested that pre-miRNAs with relatively ultra stable or unstable structures were less favoured by natural selection than those with moderately stable structures. Comparison of nucleotide compositions between non-conserved and conserved pre-miRNAs indicated the importance of U nucleotides in the pre-miRNA evolutionary process. Several characteristic structural elements were also detected in conserved pre-miRNAs.
  相似文献   

11.
12.
Late embryogenesis-abundant proteins accumulate to high levels in dry seeds. Some of them also accumulate in response to water deficit in vegetative tissues, which leads to a remarkable association between their presence and low water availability conditions. A major sub-group of these proteins, also known as typical LEA proteins, shows high hydrophilicity and a high percentage of glycine and other small amino acid residues, distinctive physicochemical properties that predict a high content of structural disorder. Although all typical LEA proteins share these characteristics, seven groups can be distinguished by sequence similarity, indicating structural and functional diversity among them. Some of these groups have been extensively studied; however, others require a more detailed analysis to advance in their functional understanding. In this work, we report the structural characterization of a group 6 LEA protein from a common bean (Phaseolus vulgaris L.) (PvLEA6) by circular dichroism and nuclear magnetic resonance showing that it is a disordered protein in aqueous solution. Using the same techniques, we show that despite its unstructured nature, the addition of trifluoroethanol exhibited an intrinsic potential in this protein to gain helicity. This property was also promoted by high osmotic potentials or molecular crowding. Furthermore, we demonstrate that PvLEA6 protein is able to form soluble homo-oligomeric complexes that also show high levels of structural disorder. The association between PvLEA6 monomers to form dimers was shown to occur in plant cells by bimolecular fluorescence complementation, pointing to the in vivo functional relevance of this association.  相似文献   

13.
In Escherichia coli and Salmonella typhimurium, L-threonine is cleaved non-oxidatively to propionate via 2-ketobutyrate by biodegradative threonine deaminase, 2-ketobutyrate formate-lyase (or pyruvate formate-lyase), phosphotransacetylase and propionate kinase. In the anaerobic condition, L-threonine is converted to the energy-rich keto acid and this is subsequently catabolised to produce ATP via substrate-level phosphorylation, providing a source of energy to the cells. Most of the enzymes involved in the degradation of L-threonine to propionate are encoded by the anaerobically regulated tdc operon. In the recent past, extensive structural and biochemical studies have been carried out on these enzymes by various groups. Besides detailed structural and functional insights, these studies have also shown the similarities and differences between the other related enzymes present in the metabolic network. In this paper, we review the structural and biochemical studies carried out on these enzymes.  相似文献   

14.
15.
A new peptide carrier with three-dimensional predetermined structural motif has been constructed by the repetitive Lys-Aib-Gly moiety. The sequential oligopeptide carrier (SOC(n)), (Lys-Aib-Gly)(n), adopts a distorted 3(10)-helical conformation and the Lys-N(epsilon)H(2) anchoring groups exhibit defined spatial orientations. Conformational analysis of the SOC(n) conjugates showed that the coupled peptides retain their initial "active" structure, while prevalence of one conformer was also observed. It is concluded that the beneficial structural elements of SOC(n) induce a favorable arrangement of the conjugated peptides, so that potent antigens and immunogens are generated.  相似文献   

16.
正二十面体和二十面体对称病毒   总被引:2,自引:0,他引:2  
本文从结晶学和拓扑学角度出发,分析了正二十面体的结构特征,并分别阐述了二十面体对称病毒的“准晶体构筑的二十面体原理”和二十面体上的点与球面上的点的拓扑等价关系.并且,在可单纯剖分的基础上,对其二十面体病毒的拓扑表面和三角形剖分数给予了详细的描述.  相似文献   

17.
Simple and complex carbohydrates have been described as "the last frontier of molecular and cell biology". The enzymes that are required for the synthesis and degradation of these compounds provide an enormous challenge in the post-genomic era. This reflects both the extreme chemical and functional diversity of sugars and the difficulties in characterizing both the substrates and the enzymes themselves. The vast myriad of enzymes involved in the synthesis, modification and degradation of oligosaccharides and polysaccharides is only just being unveiled by genomic sequencing. These so-called "carbohydrate-active enzymes" lend themselves to classification by sensitive sequence similarity detection methods. The modularity, often extremely complex, of these enzymes must first be dissected and annotated before high throughput characterization or "structural genomics" approaches may be employed. Once achieved, modular analysis also permits collation of a detailed "census" of carbohydrate-active enzymes for a whole organism or throughout an ecosystem. At the structural level, improvements in X-ray crystallography have opened up a three-dimensional understanding of the way these enzymes work. The mechanisms of many of the glycoside hydrolase families are becoming clearer, yet glycosyltransferases are only slowly revealing their secrets. What is clear from the genomic and structural data is that if we are to harness the latent power of glycogenomics, scientists must consider distant sequence relatives revealed by the sequence families or other sensitive detection methods.  相似文献   

18.
To facilitate swift structural characterizations, structural genomic/proteomic projects need to divide large multi-domain proteins into structural domains and to determine their structures separately. Thus, the assignment of structural domains based solely on sequence information, especially on the physico-chemical properties of the amino acid sequences, could be very helpful for such projects. In this study, we examined the characteristics of domain linker sequences, which are loop sequences connecting two structural domains. To this end, we prepared a set of 101 non-redundant multi-domain protein sequences with known structures, and performed an analysis of the linker sequences. The analysis revealed that the frequencies of five (Pro, Gly, Asp, Asn, Lys) amino acid residues differed significantly between the linker and non-linker loop sequences. Moreover, we observed a similar deviation for the residue pair frequencies between the two types of loop sequences. Finally, we describe an automated method, based on the above analysis, to detect loops that have high probabilities of being domain linkers in a protein sequence.  相似文献   

19.
Complex networks are frequently characterized by metrics for which particular subgraphs are counted. One statistic from this category, which we refer to as motif-role fingerprints, differs from global subgraph counts in that the number of subgraphs in which each node participates is counted. As with global subgraph counts, it can be important to distinguish between motif-role fingerprints that are ‘structural’ (induced subgraphs) and ‘functional’ (partial subgraphs). Here we show mathematically that a vector of all functional motif-role fingerprints can readily be obtained from an arbitrary directed adjacency matrix, and then converted to structural motif-role fingerprints by multiplying that vector by a specific invertible conversion matrix. This result demonstrates that a unique structural motif-role fingerprint exists for any given functional motif-role fingerprint. We demonstrate a similar result for the cases of functional and structural motif-fingerprints without node roles, and global subgraph counts that form the basis of standard motif analysis. We also explicitly highlight that motif-role fingerprints are elemental to several popular metrics for quantifying the subgraph structure of directed complex networks, including motif distributions, directed clustering coefficient, and transitivity. The relationships between each of these metrics and motif-role fingerprints also suggest new subtypes of directed clustering coefficients and transitivities. Our results have potential utility in analyzing directed synaptic networks constructed from neuronal connectome data, such as in terms of centrality. Other potential applications include anomaly detection in networks, identification of similar networks and identification of similar nodes within networks. Matlab code for calculating all stated metrics following calculation of functional motif-role fingerprints is provided as S1 Matlab File.  相似文献   

20.
The results of analysis of EROP-Moscow data base concerning structural and functional peculiarities of endogenous regulatory oligopeptides are reviewed in relation to carnosine, the first endogenous peptide bioregulator. The dipeptide fragment ala-his is widely distributed in natural systems, in particular in various representatives of living organisms. The main structural peculiarity of carnosine is its elongated "filamentous" structure with a positively charged N-terminus and a cyclic radical characteristic of large physiologically active oligopeptides. The relatedness of carnosine to other oligopeptides also becomes apparent during the analysis of its role in various regulatory systems of the body.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号