首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
随着抗生素的广泛使用,多重耐药细菌问题日益严重,对公共卫生构成了严重威胁。基因敲除技术作为一种精准干预细菌基因的方法,在解析多重耐药细菌的机制和寻找新的治疗方法方面展现出巨大的潜力。本文旨在综述基因敲除技术在多重耐药细菌研究中的应用进展。通过深入研究,我们发现基因敲除技术不仅能够帮助研究人员更好地理解多耐药细菌的耐药机制,还能为发现新的药物靶点提供重要线索。我们还探讨了基因敲除技术的优势和限制,并提出了一些可行的解决方案。基因敲除技术的进一步优化和与其他生物技术的结合将为解决多耐药细菌问题提供更为有效的策略。同时,我们也期待着基因敲除技术能在临床实践中得到更广泛的应用,为多重耐药细菌的治疗提供新的可能。  相似文献   

3.
锌指核酸酶(zinc finger nuclease, ZFN)是由特异性识别DNA的锌指结构域和Fok I切割结构域组成,能够在基因组特定位点上切割DNA,引起DNA双链断裂(double-strand break, DSB). 通过DSB修复机制,可以使基因修饰的效率比传统方法提高102~104倍.目前,利用ZFN对动物内源基因进行敲除的研究较多,但对转基因动物中外源多拷贝基因进行敲除的报道较少.本研究首先利用荧光定量PCR法对本实验室培育的两头转基因猪中增强型绿色荧光蛋白(enhanced green fluorescent protein, EGFP)基因的拷贝数进行鉴定,发现其拷贝数分别为11.95和17.36拷贝;然后将靶向EGFP的一对ZFN转染进拷贝数为1736的EGFP转基因猪的成纤维细胞中,并通过流式和CEL-1酶切方法检测敲除效率. 结果表明,转染400 ng、800 ng和1 200 ng ZFN的切割效率分别为0.97%、1.39%和1.76%,可见随着转染ZFN剂量的增加,ZFN的切割效率逐渐提高.但是,不发绿色荧光的细胞比例却没有明显提高,因此认为,ZFN敲除转基因动物中多拷贝基因的效率还是比较低.  相似文献   

4.
    
Chinese hamster ovary (CHO) cells are a ubiquitous tool for industrial therapeutic recombinant protein production. However, consistently generating high-producing clones remains a major challenge during the cell line development process. The glutamine synthetase (GS) and dihydrofolate reductase (DHFR) selection systems are commonly used CHO expression platforms based on controlling the balance of expression between the transgenic and endogenous GS or DHFR genes. Since the expression of the endogenous selection gene in CHO hosts can interfere with selection, generating a corresponding null CHO cell line is required to improve selection stringency, productivity, and stability. However, the efficiency of generating bi-allelic genetic knockouts using conventional protocols is very low (<5%). This significantly affects clone screening efficiency and reduces the chance of identifying robust knockout host cell lines. In this study, we use the GS expression system as an example to improve the genome editing process with zinc finger nucleases (ZFNs), resulting in improved GS-knockout efficiency of up to 46.8%. Furthermore, we demonstrate a process capable of enriching knockout CHO hosts with robust bioprocess traits. This integrated host development process yields a larger number of GS-knockout hosts with desired growth and recombinant protein expression characteristics.  相似文献   

5.
    
Mammalian cells with multi‐gene knockouts could be of considerable utility in research, drug discovery, and cell‐based therapeutics. However, existing methods for targeted gene deletion require sequential rounds of homologous recombination and drug selection to isolate rare desired events—a process sufficiently laborious to limit application to individual loci. Here we present a solution to this problem. Firstly, we report the development of zinc‐finger nucleases (ZFNs) targeted to cleave three independent genes with known null phenotypes. Mammalian cells exposed to each ZFN pair in turn resulted in the generation of cell lines harboring single, double, and triple gene knockouts, that is, the successful disruption of two, four, and six alleles. All three biallelic knockout events were obtained at frequencies of >1% without the use of selection, displayed the expected knockout phenotype(s), and harbored DNA mutations centered at the ZFN binding sites. These data demonstrate the utility of ZFNs in multi‐locus genome engineering. Biotechnol. Bioeng. 2010; 106: 97–105. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
    
Although Chinese hamster ovary (CHO) cells, with their unique characteristics, have become a major workhorse for the manufacture of therapeutic recombinant proteins, one of the major challenges in CHO cell line generation (CLG) is how to efficiently identify those rare, high‐producing clones among a large population of low‐ and non‐productive clones. It is not unusual that several hundred individual clones need to be screened for the identification of a commercial clonal cell line with acceptable productivity and growth profile making the cell line appropriate for commercial application. This inefficiency makes the process of CLG both time consuming and laborious. Currently, there are two main CHO expression systems, dihydrofolate reductase (DHFR)‐based methotrexate (MTX) selection and glutamine synthetase (GS)‐based methionine sulfoximine (MSX) selection, that have been in wide industrial use. Since selection of recombinant cell lines in the GS‐CHO system is based on the balance between the expression of the GS gene introduced by the expression plasmid and the addition of the GS inhibitor, L‐MSX, the expression of GS from the endogenous GS gene in parental CHOK1SV cells will likely interfere with the selection process. To study endogenous GS expression's potential impact on selection efficiency, GS‐knockout CHOK1SV cell lines were generated using the zinc finger nuclease (ZFN) technology designed to specifically target the endogenous CHO GS gene. The high efficiency (~2%) of bi‐allelic modification on the CHO GS gene supports the unique advantages of the ZFN technology, especially in CHO cells. GS enzyme function disruption was confirmed by the observation of glutamine‐dependent growth of all GS‐knockout cell lines. Full evaluation of the GS‐knockout cell lines in a standard industrial cell culture process was performed. Bulk culture productivity improved two‐ to three‐fold through the use of GS‐knockout cells as parent cells. The selection stringency was significantly increased, as indicated by the large reduction of non‐producing and low‐producing cells after 25 µM L‐MSX selection, and resulted in a six‐fold efficiency improvement in identifying similar numbers of high‐productive cell lines for a given recombinant monoclonal antibody. The potential impact of GS‐knockout cells on recombinant protein quality is also discussed. Biotechnol. Bioeng. 2012; 109:1007–1015. © 2011 Wiley Periodicals, Inc.  相似文献   

7.
    
Targeted DNA integration is commonly used to eliminate position effects on transgene expression. Integration can be targeted to specific sites in the genome via both homology‐based and homology‐independent processes. Both pathways start the integration process with a site‐specific break in the chromosome, typically from a zinc‐finger nuclease (ZFN). We previously described an efficient homology‐independent targeted integration technique that captures short (<100 bp) pieces of DNA at chromosomal breaks created by ZFNs. We show here that inclusion of a nuclease target site on the donor plasmid followed by in vivo nuclease cleavage of both the donor and the chromosome results in efficient integration of large, transgene‐sized DNA molecules into the chromosomal double‐strand break. Successful targeted integration via in vivo donor linearization is demonstrated at five distinct loci in two mammalian cell types, highlighting the generality of the approach. Finally, we show that CHO cells, a cell type recalcitrant to homology‐based integration, are proficient at capture of in vivo‐linearized transgene donors. Moreover, we demonstrate knockout of the hamster FUT8 gene via the simultaneous ZFN‐ or TALE nuclease‐mediated integration of an antibody cassette. Our results enable efficient targeted transgene addition to cells and organisms that fare poorly with traditional homology‐driven approaches. Biotechnol. Bioeng. 2013; 110: 871–880. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
人工锌指核酸酶介导的基因组定点修饰技术   总被引:2,自引:0,他引:2  
Xiao A  Hu YY  Wang WY  Yang ZP  Wang ZX  Huang P  Tong XJ  Zhang B  Lin S 《遗传》2011,33(7):665-683
锌指核酸酶(ZFN)由锌指蛋白(ZFP)结构域和Fok I核酸内切酶的切割结构域人工融合而成,是近年来发展起来的一种可用于基因组定点改造的分子工具。ZFN可识别并结合特定的DNA序列,并通过切割这一序列的特定位点造成DNA的双链断裂(DSB)。在此基础上,人们可以对基因组的特定位点进行各种遗传操作,包括基因打靶、基因定点插入、基因修复等,从而能够方便快捷地对基因组实现靶向遗传修饰。这种新的基因组定点修饰方法的突出优势是适用性好,对物种没有选择性,并且可以在细胞和个体水平进行遗传操作。文章综述了ZFN技术的研究进展及应用前景,重点介绍ZFN的结构与作用机制、现有的靶点评估及锌指蛋白库的构建与筛选方法、基因组定点修饰的策略,以及目前利用这一技术已成功实现突变的物种及内源基因,为开展这一领域的研究工作提供参考。  相似文献   

9.
    
Many devastating human diseases are caused by mutations in a single gene that prevent a somatic cell from carrying out its essential functions, or by genetic changes acquired as a result of infectious disease or in the course of cell transformation. Targeted gene therapies have emerged as potential strategies for treatment of such diseases. These therapies depend upon rare-cutting endonucleases to cleave at specific sites in or near disease genes. Targeted gene correction provides a template for homology-directed repair, enabling the cell’s own repair pathways to erase the mutation and replace it with the correct sequence. Targeted gene disruption ablates the disease gene, disabling its function. Gene targeting can also promote other kinds of genome engineering, including mutation, insertion, or gene deletion. Targeted gene therapies present significant advantages compared to approaches to gene therapy that depend upon delivery of stably expressing transgenes. Recent progress has been fueled by advances in nuclease discovery and design, and by new strategies that maximize efficiency of targeting and minimize off-target damage. Future progress will build on deeper mechanistic understanding of critical factors and pathways.  相似文献   

10.
    
To generate albino lines of Xenopus tropicalis, we injected fertilized eggs with mRNAs encoding zinc‐finger nucleases (ZFNs) targeting the tyrosinase coding region. Surprisingly, vitiligo was observed on the skin of F0 frogs that had been injected with ZFN mRNAs, indicating that both tyrosinase genes in the genome were disrupted in all melanocytes within the vitiligo patches. Mutation analysis using genomic DNA from the skin revealed that two mosaic F0 frogs underwent spatially complex tyrosinase gene mutations. The data implies that the ZFN‐induced tyrosinase gene ablations occurred randomly over space and time throughout the entire body, possibly until the young tadpole stage, and that melanocyte precursors lacking functional tyrosinase proliferated and formed vitiligo patches. Several albino X. tropicalis, which are compound heterozygotes for biallelic tyrosinase mutations, were obtained by mating the mosaic F0 frogs. To our knowledge, this is the first report of the albino vertebrates generated by the targeted gene knockout.  相似文献   

11.
We previously developed a novel type of zinc finger nucleases (ZFNs), sandwiched ZFNs that can discriminate DNA substrates from cleavage products and thus cleave DNA much more efficiently than conventional ZFNs as well as perform with multiple turnovers like restriction endonucleases. In the present study, we used the sandwiched ZFN to unidirectionally clone exogenous genes into target vectors by cleaving heterogeneous sites that contained heterogeneous spacer DNAs between two zinc-finger protein binding sites with a single sandwiched ZFN. We demonstrated that the sandwiched ZFN cleaved a 40-fold excess of both insert and vector plasmids within 1 h and confirmed by sequencing that the resulting recombinants harbored the inserted DNA fragment in the desired orientation. Because sandwiched ZFNs can recognize and cleave a variety of long (?26-bp) target DNAs, they may not only expand the utility of ZFNs for construction of recombinant plasmids, but also serve as useful meganucleases for synthesis of artificial genomes.  相似文献   

12.
锌指核酸酶(zinc finger nuclease,ZFN)技术是近年来发展起来的一种对基因组DNA实现靶向修饰的新技术。ZFN通过作用于基因组DNA上特异的靶位点产生DNA双链切口(double strand break,DSB),然后经过非同源末端连接(non-homologous end joining,NHEJ)或同源重组(homologous recombination,HR)途径实现对基因组DNA的靶向敲除或者替换。该技术近些年来已经被广泛应用于基因靶向修饰的研究。本文在简要介绍ZFN技术的基础上,重点综述了目前该技术在基因靶向修饰中的应用研究进展,并同时对该技术目前所需解决的一些问题以及未来的研究方向进行了分析。  相似文献   

13.
We previously reported that our sandwiched zinc-finger nucleases (ZFNs), in which a DNA cleavage domain is inserted between two artificial zinc-finger proteins, cleave their target DNA much more efficiently than conventional ZFNs in vitro. In the present study, we compared DNA cleaving efficiencies of a sandwiched ZFN with those of its corresponding conventional ZFN in mammalian cells. Using a plasmid-based single-strand annealing reporter assay in HEK293 cells, we confirmed that the sandwiched ZFN induced homologous recombination more efficiently than the conventional ZFN; reporter activation by the sandwiched ZFN was more than eight times that of the conventional one. Western blot analysis showed that the sandwiched ZFN was expressed less frequently than the conventional ZFN, indicating that the greater DNA-cleaving activity of the sandwiched ZFN was not due to higher expression of the sandwiched ZFN. Furthermore, an MTT assay demonstrated that the sandwiched ZFN did not have any significant cytotoxicity under the DNA-cleavage conditions. Thus, because our sandwiched ZFN cleaved more efficiently than its corresponding conventional ZFN in HEK293 cells as well as in vitro, sandwiched ZFNs are expected to serve as an effective molecular tool for genome editing in living cells.  相似文献   

14.
    
《Journal of lipid research》2016,57(7):1155-1161
  相似文献   

15.
16.
Abstract

Zinc finger protein ZNF191(243–368), the zinc finger region of ZNF191, is potentially associated with cell proliferation in hepatocellular carninoma. A His-tag expression system was used to express and purify proteins with mutations in the zinc finger 3 of ZNF191(243–368) for analysis of protein properties, structure, and functions. The purification of the His-tag fusion proteins was simpler and faster than that of the ZNF191(243–368) inclusion bodies. The properties and structures of the His-tag fusion mutant proteins were investigated using spectrographic techniques and DNA hydrolysis experiment. The His6-tag system could be used to express ZNF191(243–368). The presence of the His6-tag at the N-terminus of ZNF191(243–368) did not evidently affect its properties and structure. However, the site-directed mutations in zinc finger 3 affected the structure of the protein. The DNA hydrolase activity of His6-ZF-F3/H4 suggested that four histidines in zinc finger 3 might form a structure similar to that of the active center in a hydrolase. This work reports that continuous histidines need to form a certain structure for specific functions, and provides new insights into the design of an artificial nuclease.  相似文献   

17.
18.
  总被引:3,自引:0,他引:3  
The ability to efficiently inactivate or replace genes in model organisms allowed a rapid expansion of our understanding of many of the genetic, biochemical, molecular and cellular mechanisms that support life. With the advent of new techniques for manipulating genes and genomes that are applicable not only to single‐celled organisms, but also to more complex organisms such as animals and plants, the speed with which scientists and biotechnologists can expand fundamental knowledge and apply that knowledge to improvements in medicine, industry and agriculture is set to expand in an exponential fashion. At the heart of these advancements will be the use of gene editing tools such as zinc finger nucleases, modified meganucleases, hybrid DNA/RNA oligonucleotides, TAL effector nucleases and modified CRISPR/Cas9. Each of these tools has the ability to precisely target one specific DNA sequence within a genome and (except for DNA/RNA oligonucleotides) to create a double‐stranded DNA break. DNA repair to such breaks sometimes leads to gene knockouts or gene replacement by homologous recombination if exogenously supplied homologous DNA fragments are made available. Genome rearrangements are also possible to engineer. Creation and use of such genome rearrangements, gene knockouts and gene replacements by the plant science community is gaining significant momentum. To document some of this progress and to explore the technology's longer term potential, this review highlights present and future uses of designer nucleases to greatly expedite research with model plant systems and to engineer genes and genomes in major and minor crop species for enhanced food production.  相似文献   

19.
20.
    
Emerging genome editing technologies hold great promise for the improvement of agricultural crops. Several related genome editing methods currently in development utilize engineered, sequence‐specific endonucleases to generate DNA double strand breaks (DSBs) at user‐specified genomic loci. These DSBs subsequently result in small insertions/deletions (indels), base substitutions or incorporation of exogenous donor sequences at the target site, depending on the application. Targeted mutagenesis in soybean (Glycine max) via non‐homologous end joining (NHEJ)‐mediated repair of such DSBs has been previously demonstrated with multiple nucleases, as has homology‐directed repair (HDR)‐mediated integration of a single transgene into target endogenous soybean loci using CRISPR/Cas9. Here we report targeted integration of multiple transgenes into a single soybean locus using a zinc finger nuclease (ZFN). First, we demonstrate targeted integration of biolistically delivered DNA via either HDR or NHEJ to the FATTY ACID DESATURASE 2‐1a (FAD2‐1a) locus of embryogenic cells in tissue culture. We then describe ZFN‐ and NHEJ‐mediated, targeted integration of two different multigene donors to the FAD2‐1a locus of immature embryos. The largest donor delivered was 16.2 kb, carried four transgenes, and was successfully transmitted to T1 progeny of mature targeted plants obtained via somatic embryogenesis. The insertions in most plants with a targeted, 7.1 kb, NHEJ‐integrated donor were perfect or near‐perfect, demonstrating that NHEJ is a viable alternative to HDR for gene targeting in soybean. Taken together, these results show that ZFNs can be used to generate fertile transgenic soybean plants with NHEJ‐mediated targeted insertions of multigene donors at an endogenous genomic locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号