首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is one of the key restraints to agricultural productivity worldwide and is expected to increase further. Drought stress accompanied by reduction in precipitation pose major challenges to future food safety. Strategies should be develop to enhance drought tolerance in crops like chickpea and wheat, in order to enhance their growth and yield. Drought tolerance strategies are costly and time consuming however, recent studies specify that plant growth promoting rhizobacteria (PGPR) and plant growth regulators (PGRs) can help plants to withstand under harsh environmental condition and enable plants to cope with drought stress. PGPR can act as biofertilizer and bioenhancer for different legumes and non-legumes. The use of PGPR and symbiotic microorganisms, may be valuable in developing strategies to assist water conservation in plants. The use of PGPR has been confirmed to be an ecologically sound way of enhancing crop yields by facilitating plant growth through direct or indirect mechanism. The mechanisms of PGPR for water conservation include secretion of exopolysaccharides, biofilm formation, alternation in phytohormone content, improvement in sugar concentration, enhancing availability of micro- and macronutrients and changes in plant functional traits. Similarly, plant growth regulators (PGRs) are specially noticed in actively growing tissues under stress conditions and have been associated in the control of cell division, embryogenesis, root formation, fruit development and ripening, and reactions to biotic and abiotic stresses and upholding water conservation status in plants. Previous studies also suggest that plant metabolites interact with plant physiology under stress condition and impart drought tolerance. Metabolites like, sugars, amino acids, organic acid and polyols play a key role in drought tolerance of crop plants grown under stress condition. It is concluded from the present study that PGRs in combination with PGPR consortium can be an effective formulation to promote plant growth and maintenance of plant turgidity under drought stress. This review is a compilation of the effect of drought stress on crop plants and described interactions between PGPR/PGRs and plant development, knowledge of water conservation and stress release strategies of PGPR and PGRs and the role of plant metabolites in drought tolerance of crop plants. This review also bridges the gaps that summarizes the mechanism of action of PGPR for drought tolerance of crop plants and sustainability of agriculture and applicability of these beneficial rhizobacteria in different agro-ecosystems under drought stress.  相似文献   

2.
Plants encounter many biotic agents, such as viruses, bacteria, nematodes, weeds, and arachnids. These entities induce biotic stress in their hosts by disrupting normal metabolism, and as a result, limit plant growth and/or are the cause of plant mortality. Some biotic agents, however, interact symbiotically or synergistically with their host plants. Some microbes can be beneficial to plants and perform the same role as chemical fertilizers and pesticides, acting as a biofertilizer and/or biopesticide. Plant growth promoting rhizobacteria (PGPR) can significantly enhance plant growth and represent a mutually helpful plant-microbe interaction. Bacillus species are a major type of rhizobacteria that can form spores that can survive in the soil for long period of time under harsh environmental conditions. Plant growth is enhanced by PGPR through the induction of systemic resistance, antibiosis, and competitive omission. Thus, the application of microbes can be used to induce systemic resistance in plants against biotic agents and enhance environmental stress tolerance. Bacillus subtilis exhibits both a direct and indirect biocontrol mechanism to suppress disease caused by pathogens. The direct mechanism includes the synthesis of many secondary metabolites, hormones, cell-wall-degrading enzymes, and antioxidants that assist the plant in its defense against pathogen attack. The indirect mechanism includes the stimulation of plant growth and the induction of acquired systemic resistance. Bacillus subtilis can also solubilize soil P, enhance nitrogen fixation, and produce siderophores that promote its growth and suppresses the growth of pathogens. Bacillus subtilis enhances stress tolerance in their plant hosts by inducing the expression of stress-response genes, phytohormones, and stress-related metabolites. The present review discusses the activity of B. subtilis in the rhizosphere, its role as a root colonizer, its biocontrol potential, the associated mechanisms of biocontrol and the ability of B. subtilis to increase crop productivity under conditions of biotic and abiotic stress.  相似文献   

3.
Phytohormones participate in many aspects of the plant life cycle, including responses to biotic and abiotic stresses. They play a key role in plant responses to the environment with direct bearing on a plant’s fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the role of phytohormones in halophytic plants. The variability in maximal salinity level that halophytes can tolerate makes it difficult to characterize the specific traits responsible for salt tolerance. However, the most evident effect of salinity is growth disturbance, and growth is directly governed by phytohormones. Phytohormones such as abscisic acid, salicylic acid ethylene and jasmonates are traditionally related to stress responses, while the involvement of cytokinins, gibberellins and auxins has started to be analyzed. Polyamines, although they can’t be considered phytohormones because of the high concentrations required for cell responses, have been proposed as a new category of plant growth regulators involved in several plant processes and stress responses. This review integrates the advances in the knowledge about phytohormones in halophytes and their participation in salt tolerance.  相似文献   

4.
5.
  • Involvement of nitric oxide (NO) in plant metabolism and its connection with phytohormones has not been fully described, thus information about the role of this molecule in signalling pathways remains fragmented. In this study, the effects of NO on calmodulin (CAM), calcium protein kinase (CPK), content of phytohormones and secondary metabolites in canola plants under salinity stress were investigated.
  • We applied 100 μM sodium nitroprusside as an NO source to canola plants grown under saline (100 mM NaCl) and non-saline conditions at the vegetative stage.
  • Plant growth was negatively affected by salinity, but exogenous NO treatment improved growth. NO caused a significant increase in activity of CAT, SOD and POX through their enhanced gene expression in stressed canola. Salinity-responsive genes, namely CAM and CPK, were induced by NO in plants grown under salinity. NO application enhanced phenolic compounds, such as gallic acid and coumaric acid and flavonoid compound,s catechin, diadzein and kaempferol, in plants subjected to salinity. NO treatment enhanced abscisic acid and brassinosteroids but decreased auxin and gibberellin in stressed canola plants.
  • The impacts of NO in improving stress tolerance in canola required CAM and CPK. Also, NO signalling re-established the phytohormone balance and resulted in enhanced tolerance to salt stress. Furthermore, NO improved salinity tolerance in canola by increasing enzymatic and non-enzymatic antioxidant content.
  相似文献   

6.
Salinity stress is one of the major abiotic stresses affecting plant growth and productivity globally. In order to improve the yields of plants growing under salt stress bear remarkable importance to supply sustainable agriculture. Acclimation of plants to salinized condition depends upon activation of cascade of molecular network involved in stress sensing/perception, signal transduction, and the expression of specific stress-related genes and metabolites. Isolation of salt overly sensitive (SOS) genes by sos mutants shed us light on the relationship between ion homeostasis and salinity tolerance. Regulation of antioxidative system to maintain a balance between the overproduction of reactive oxygen species and their scavenging to keep them at signaling level for reinstating metabolic activity has been elucidated. However, osmotic adaptation and metabolic homeostasis under abiotic stress environment is required. Recently, role of phytohormones like Abscisic acid, Jasmonic acid, and Salicylic acid in the regulation of metabolic network under osmotic stress condition has emerged through crosstalk between chemical signaling pathways. Thus, abiotic stress signaling and metabolic balance is an important area with respect to increase crop yield under suboptimal conditions. This review focuses on recent developments on improvement in salinity tolerance aiming to contribute sustainable plant yield under saline conditions in the face of climate change.  相似文献   

7.

Soil salinity is one among the common environmental threats to agriculture. It adversely affects the physio-biochemical processes of plants that eventually lead to the reduction in growth, development and crop productivity. To cope with such adverse conditions, plants develop certain internal mechanisms, but under severe conditions these mechanisms fail to tolerate the salt stress. To overcome this problem, various strategies have been employed that help plants to mitigate salinity effects. Among the various strategies, the application of plant growth regulators (PGRs) has gained significant attention to induce salt tolerance in plants. A number of PGRs have been used so far. Among these, triacontanol (TRIA), a new PGR is gaining a lot of importance to enhance the plant growth, productivity and salinity tolerance in different crops. The utility of TRIA is dependent on its applied concentration. Its lower concentrations generally alleviate the salinity effects. However, the knowledge of its biosynthesis, signalling and its role particularly to mitigate salinity effect remains scanty. In the present article, the focus has been given on the role of exogenous applications of TRIA in the regulation of physio-biochemical characteristics especially plant growth, photosynthesis, nutrient acquisition, oxidative stress, antioxidant systems, compatible solutes, yield attributes and its mode of action in plants under salinity conditions. The salient features of the review may provide new insights on the role of TRIA in countering the ill effect of salinity in different crop plants.

  相似文献   

8.
植物耐盐基因工程研究进展   总被引:2,自引:0,他引:2  
盐害是影响植物生长和作物产量的主要因素之一。用于提高植物耐盐性的基因工程方法很多,最常见的就是在植物中过量表达抗盐相关的功能基因,包括植物信号传导蛋白基因、植物离子通道蛋白基因和合成小分子渗透剂的酶基因等。归纳了近年来植物耐盐基因工程的研究进展,并展望了植物耐盐基因工程的研究前景。  相似文献   

9.

Soil salinity is a major limiting factor for crop productivity worldwide and is continuously increasing owing to climate change. A wide range of studies and practices have been performed to induce salt tolerance mechanisms in plants, but their result in crop improvement has been limited due to lack of time and money. In the current scenario, there is increasing attention towards habitat-imposed plant stress tolerance driven by plant-associated microbes, either rhizospheric and/or endophytic. These microbes play a key role in protecting plants against various environmental stresses. Therefore, the use of plant growth-promoting microbes in agriculture is a low-cost and eco-friendly technology to enhance crop productivity in saline areas. In the present review, the authors describe the functionality of endophytic bacteria and their modes of action to enhance salinity tolerance in plants, with special reference to osmotic and ionic stress management. There is concrete evidence that endophytic bacteria serve host functions, such as improving osmolytes, anti-oxidant and phytohormonal signaling and enhancing plant nutrient uptake efficiency. More research on endophytes has enabled us to gain insights into the mechanism of colonization and their interactions with plants. With this information in mind, the authors tried to solve the following questions: (1) how do benign endophytes ameliorate salt stress in plants? (2) What type of physiological changes incur in plants under salt stress conditions? And (3), what type of determinants produced by endophytes will be helpful in plant growth promotion under salt stress?

  相似文献   

10.
There is large area of saline abandoned and low-yielding land distributed in coastal zone in the world. Soil salinity which inhibits plant growth and decreases crop yield is a serious and chronic problem for agricultural production. Improving plant salt tolerance is a feasible way to solve this problem. Plant physiological and biochemical responses under salinity stress become a hot issue at present, because it can provide insights into how plants may be modified to become more tolerant. It is generally known that the negative effects of soil salinity on plants are ascribed to ion toxicity, oxidative stress and osmotic stress, and great progress has been made in the study on molecular and physiological mechanisms of plant salinity tolerance in recent years. However, the present knowledge is not easily applied in the agronomy research under field environment. In this review, we simplified the physiological adaptive mechanisms in plants grown in saline soil and put forward a practical procedure for discerning physiological status and responses. In our opinion, this procedure consists of two steps. First, negative effects of salt stress are evaluated by the changes in biomass, crop yield and photosynthesis. Second, the underlying reasons are analyzed from osmotic regulation, antioxidant response and ion homeostasis. Photosynthesis is a good indicator of the harmful effects of saline soil on plants because of its close relation with crop yield and high sensitivity to environmental stress. Particularly, chlorophyll a fluorescence transient has been accepted as a reliable, sensitive and convenient tool in photosynthesis research in recent years, and it can facilitate and enrich photosynthetic research under field environment.  相似文献   

11.

At present plants continuously exposed to salinity stress due to the challenging environment that has reduced the crop growth and productivity worldwide. Application of phytohormones by using seed priming method emerges as one of the most reliable and cost effective to alleviate the toxic effect of salinity stress. In this study, we evaluate the effect of seed-primed salicylic acid (SA) to reduce the adverse effect of different salt concentrations (0, 100, 200, and 300 mM NaCl) in pea (Pisum sativum L.) seedlings. After seedling emergence, percent seed germination was calculated; however, after 60 days; plants were sampled for studying the growth and photosynthetic traits, lipid peroxidation level, antioxidant activities, ions accumulation, and its sequestration. The results depicted that salinity treatments hampered overall growth performance and induced oxidative stress in a dose-dependent manner. Salinity also has negatively influence on ion accumulation as Na+ ion increased while K+ ion decreased. On the other hand, seed priming with SA significantly reduced the salinity-induced effects on the overall performance of plants, including growth and photosynthetic attributes. SA alleviated the adverse effect of salinity even at higher salinity level by inducing enzymatic and non-enzymatic antioxidant systems, soluble sugars, and proline accumulation, and regulating ion homeostasis along with up-regulation of Na+/H+ antiporters (SOS1 and NHX1). Thus, seed priming with SA shows a comprehensive role in mitigation of salinity stress and can be used as a model for promising salinity tolerant cultivation.

  相似文献   

12.
In the climate change scenario the drought has been diagnosed as major stress affecting crop productivity. This review demonstrates some recent findings on the amelioration of drought stress. Nanoparticles, synthetic growth regulators viz. Trinexapac-ethyl, and Biochar addition helps to economize the water budget of plants, enhances the bioavailability of water and nutrients as well as overcomes drought induced osmotic and oxidative stresses. Besides ABA, SA and JA are also involved in inducing tolerance to drought stress through modulation of physiological and biochemical processes in plants. Plant growth promoting rhizobacteria (PGPR) offer new opportunities in agricultural biotechnology. These beneficial microorganisms colonize the rhizosphere/endo-rhizosphere of plants and impart drought tolerance by improving root architechture, enhancing water use efficiency, producing exopolysaccharides, phytohormones viz, ABA, SA and IAA and volatile compounds. Further PGPR also play positive role in combating osmotic and oxidative stresses induced by drought stress through enhancing the accumulation of osmolytes, antioxidants and upregulation or down regulation of stress responsive genes. In transgenic plants stress inducible genes enhanced abiotic stress tolerance by encoding key enzymes regulating biosynthesis of compatible solutes. The role of genes/cDNAs encoding proteins involved in regulating other genes/proteins, signal transduction process and strategies to improve drought stress tolerance have also been discussed.  相似文献   

13.

Key message

The role of transporters in imparting salt tolerance to mangroves is not yet understood. Identification of the role of transporters in halophytes is promising, as far as the development of genetically engineered salt tolerant crops is concerned.

Abstract

Mangroves are models for stress tolerance and they provide a reservoir for some of the novel genes and proteins, involved in salt tolerance. Biochemical or physiological mechanisms contribute to salt tolerance depending on variations in the environment. A great deal of research on salinity tolerance of plants, probes into water relations, photosynthesis, and accumulation of various in-organic ions and organic metabolites. The ability of the plant to react to high salinity depends on the genes that are expressed during stress. The mechanism of salinity tolerance becomes complicated when the responses of plants varies with salinity and environmental conditions. During the onset and development of salt stress within a plant, major processes such as photosynthesis, protein synthesis and lipid metabolisms are affected. The present review attempts to dissect out the role of transporters in salt tolerance of mangroves.  相似文献   

14.

Aims

Bacteria possessing ACC deaminase activity reduce the level of stress ethylene conferring resistance and stimulating growth of plants under various biotic and abiotic stresses. The present study aims at isolating efficient ACC deaminase producing PGPR strains from the rhizosphere of rice plants grown in coastal saline soils and quantifying the effect of potent PGPR isolates on rice seed germination and seedling growth under salinity stress and ethylene production from rice seedlings inoculated with ACC deaminase containing PGPR.

Methods

Soils from root region of rice growing in coastal soils of varying salinity were used for isolating ACC deaminase producing bacteria and three bacterial isolates were identified following polyphasic taxonomy. Seed germination, root growth and stress ethylene production in rice seedlings following inoculation with selected PGPR under salt stress were quantified.

Results

Inoculation with selected PGPR isolates had considerable positive impacts on different growth parameters of rice including germination percentage, shoot and root growth and chlorophyll content as compared to uninoculated control. Inoculation with the ACC deaminase producing strains reduced ethylene production under salinity stress.

Conclusions

This study demonstrates the effectiveness of rhizobacteria containing ACC deaminase for enhancing salt tolerance and consequently improving the growth of rice plants under salt-stress conditions.  相似文献   

15.

Under the stressed conditions plant growth-promoting rhizobacteria (PGPR) are able to stimulate plant growth through several mechanisms, including antioxidants alleviation, regulation of stress responsive genes and phytohormones etc. Present study is conducted to investigate the impact of Paenibacillus lentimorbus B-30488 inoculation on salinity and drought stress mitigation in Arabidopsis thaliana through modulation in defense enzymes, phyto-hormones and root system architecture associated gene expression profiling. In vitro experiments clearly demonstrated the role of B-30488 in stimulating the root length, branches, lateral root formation and biomass under salinity and drought stress. The inoculation of B-30488 modulated the phytohormones levels to protect the plants from salinity and drought stress. Similarly, defence enzymes were also activated under the stressed conditions, but B-30488 inoculation reduced the antioxidants content during salinity and drought stress as compared to their respective controls. Microscopy results showed decrease in lateral roots hair formation under both stresses and B-30488 inoculation not only mitigate but also enhanced the lateral root formation. Gene expression analysis through real time polymerase chain reaction (RT-PCR) showed modulated expression of several genes related to root development, stress and lateral root formation in B-30488 inoculated seedlings. Results based on the present study, B-30488 is also involved in alteration root architecture, its growth regulation via modulation in phytohormones and genes expression and overall significant improvement in plant growth under stress conditions.

  相似文献   

16.
17.
Abstract

A large part of global agricultural fields, including the wheat (Triticum aestivum L.) ones, are subjected to various stresses including salinity. Given the increasing world population, finding methods and strategies that can alleviate salinity stress on crop yield production is of outmost importance. The presented review has consulted more than 400 articles related to the clean and sustainable production of wheat in saline fields affected by biological, environmental, economical, and social parameters including the important issue of climate change (global warming). The negative effects of salt stress on plant growth and the techniques, which have been so far detected to alleviate salinity stress on wheat growth have been analyzed and presented. The naturally tolerant species of wheat can use a range of mechanisms to alleviate salinity stress including sodium exclusion, potassium retention, and osmoregulation. However, the following can be considered as the most important techniques to enhance wheat tolerance under stress: (1) the biotechnological (crop breeding), biological (soil microbes), and biochemical (seed priming) methods, (2) the use of naturally tolerant genotypes, and (3) their combined use. The proper handling of irrigation water is also an important subject, which must be considered when planting wheat in saline fields. In conclusion, the sustainable and cleaner production of wheat under salt stress is determined by a combination of different parameters including the biotechnological techniques, which if handled properly, can enhance wheat production in saline fields.  相似文献   

18.
The response of two root associated bacteria Pseudomonas pseudoalcaligenes and Bacillus pumilus were studied in the (salt-sensitive) rice GJ17 cultivar to salinity under controlled environmental growth conditions for protection of plant from adverse effect of salinity. Salinity affects the growth of salt-sensitive cultivar, but inoculation of plant growth promoting rhizobacteria (PGPR) reduces the harmful effect of salinity. The present study states that PGPR helps to reduce lipid peroxidation and superoxide dismutase activity in salt-sensitive GJ17 cultivar under salinity and play an important role in the growth regulation for positive adaptation of plants to salt stress. This study shows that inoculation of paddy (Oryza sativa) with such bacteria could provide salt-tolerant ability by reducing the toxicity of reactive oxygen species by reducing plant cell membrane index, cell caspase-like protease activity, and programmed cell death and hence resulted in increase cell viability. As these isolates remain associated with the roots, the effects of tolerance against salinity are observed here. Results also indicate that isolated PGPR strain help in alleviating up to 1.5 % salinity stress as well as improve tolerance.  相似文献   

19.
Salinity adversely affects plant growth and development. Halotolerant plant-growth-promoting rhizobacteria (PGPR) alleviate salt stress and help plants to maintain better growth. In the present study, six PGPR strains were analyzed for their involvement in salt-stress tolerance in Arachis hypogaea. Different growth parameters, electrolyte leakage, water content, biochemical properties, and ion content were analyzed in the PGPR-inoculated plants under 100 mM NaCl. Three bacterial strains, namely, Brachybacterium saurashtrense (JG-06), Brevibacterium casei (JG-08), and Haererohalobacter (JG-11), showed the best growth of A. hypogaea seedlings under salt stress. Plant length, shoot length, root length, shoot dry weight, root dry weight, and total biomass were significantly higher in inoculated plants compared to uninoculated plants. The PGPR-inoculated plants were quite healthy and hydrated, whereas the uninoculated plant leaves were desiccated in the presence of 100 mM NaCl. The percentage water content (PWC) in the shoots and roots was also significantly higher in inoculated plants compared to uninoculated plants. Proline content and soluble sugars were significantly low, whereas amino acids were higher than in uninoculated plants. The MDA content was higher in uninoculated plants than in inoculated plants at 100 mM NaCl. The inoculated plants also had a higher K+/Na+ ratio and higher Ca2+, phosphorus, and nitrogen content. The auxin concentration was higher in both shoot and root explants in the inoculated plants. Therefore, it could be predicted that all these parameters cumulatively improve plant growth under saline conditions in the presence of PGPR. This study shows that PGPR play an important role in inducing salinity tolerance in plants and can be used to grow salt-sensitive crops in saline areas.  相似文献   

20.
In this report we address the changes in the expression of the genes involved in ROS scavenging and ethylene biosynthesis induced by the inoculation of plant growth-promoting rhizobacteria (PGPR) isolated from potato rhizosphere. The two Bacillus isolates used in this investigation had earlier demonstrated a striking influence on potato tuberization. These isolates showed enhanced 1-aminocyclopropane-1-carboxylic acid deaminase activity, phosphate solubilization, and siderophore production. Potato plants inoculated with these PGPR isolates were subjected to salt, drought, and heavy-metal stresses. The enhanced mRNA expression levels of the various ROS-scavenging enzymes and higher proline content in tubers induced by PGPR-treated plants contributed to increased plant tolerance to these abiotic stresses. Furthermore, the photosynthetic performance indices of PGPR-inoculated plants clearly exhibited a positive influence of these bacterial strains on the PSII photochemistry of the plants. Overall, these results suggest that the PGPR isolates used in this study are able to confer abiotic stress tolerance in potato plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号