首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  相似文献   

2.
3.
Histone modifications are increasingly being recognized as important epigenetic mechanisms that govern chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), responsible for tri‐methylation of lysine 27 on histone 3 (H3K27me3) that leads to gene silencing. This highly conserved histone methyltransferase is found to be overexpressed in many different types of cancers including melanoma, where it is postulated to abnormally repress tumor suppressor genes. Somatic mutations have been identified in approximately 3% of melanomas, and activating mutations described within the catalytic SET domain of EZH2 confer its oncogenic activity. In the following review, we discuss the evidence that EZH2 is an important driver of melanoma progression and we summarize the progress of EZH2 inhibitors against this promising therapeutic target.  相似文献   

4.
Gliomas are the commonest and most aggressive primary malignant tumor in the central nervous system. Long noncoding RNAs (lncRNAs) have been identified to act as crucial regulators in multiple biological processes, including tumorigenesis. FAM83H antisense RNA1 (FAM83H‐AS1) has been uncovered to be dysregulated in several cancers. However, the biological role of FAM83H‐AS1 in glioma still needs to be investigated. Currently, our findings indicated that FAM83H‐AS1 was upregulated in glioma tissues and cell lines and high level of FAM83H‐AS1 was associated with poor prognosis of glioma. Loss‐of‐function assays demonstrated that silenced FAM83H‐AS1 obviously suppressed cell proliferation via regulating the cell‐cycle distribution and cell apoptosis rate, and mechanistic experiments revealed that FAM83H‐AS1 could epidemically silence CDKN1A expression through recruiting EZH2 to the promoter of CDKN1A, thereby influencing the cell cycle and proliferation. Collectively, our findings suggested that FAM83H‐AS1 participated in the progression of glioma and might act as a potential therapeutic target and prognosis biomarker for human glioma.  相似文献   

5.
6.
《Molecular cell》2023,83(9):1393-1411.e7
  1. Download : Download high-res image (205KB)
  2. Download : Download full-size image
  相似文献   

7.
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.  相似文献   

8.
《Epigenetics》2013,8(4):634-643
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells’ resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.  相似文献   

9.
The role of long non‐coding RNAs (lncRNAs) in tumorigenesis and development of ovarian cancer (OC) has caught the attention of scientists. UNC5B antisense RNA 1 (UNC5B‐AS1) is a newly identified carcinogenic lncRNA in thyroid papillary carcinoma, but its role in OC remains unclear. This study is proposed to investigate the function and mechanism of UNC5B‐AS1 in OC. UNC5B‐AS1 expression in OC samples was obtained from gene expression profiling interactive analysis (GEPIA) based on The Cancer Genome Atlas data. Gene expressions were detected by quantitative real‐time polymerase chain reaction (RT‐qPCR) and western blot. Biological functions of UNC5B‐AS1 were assessed by cell counting kit‐8, colony formation, and caspase‐3 analysis. GEPIA revealed the UNC5B‐AS1 upregulation in OC samples. RT‐qPCR assay confirmed the upregulation of UNC5B‐AS1 in OC cells. Functionally, depletion of UCN5B‐AS1 hindered proliferation and prompted apoptosis in OC cells. Mechanistically, we found that UNC5B‐AS1 interacted with zeste 2 polycomb repressive complex 2 subunit (EZH2) to trigger trimethylation of histone H3 at lysine 27 (H3K27me3) on N‐myc downstream regulated gene‐2 (NDRG2) promoter and epigenetically repressed NDRG2. Rescue assay indicated the participation of NDRG2 in the regulation of UNC5B‐AS1 on OC progression. Together, we first illustrated that UNC5B‐AS1 promoted OC progression by regulating the H3K27me on NDRG2 via EZH2, indicating UNC5B‐AS1 as a potential molecular target for OC treatment.  相似文献   

10.
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [3H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.  相似文献   

11.
《Epigenetics》2013,8(4):477-482
DNA methylation and polycomb proteins are well-known mediators of epigenetic silencing in mammalian cells. Usually described as mutually exclusive, this statement is today controversial and recent in vitro studies suggest the co-existence of both repressor systems. We addressed this issue in the study of Retinoic Acid Receptor β (RARβ), a tumor suppressor gene frequently silenced in prostate cancer. We found that the RARβ promoter is hypermethylated in all studied prostate tumors and methylation levels are positively correlated with H3K27me3 enrichments. Thus, by using bisulfite conversion and pyrosequencing of immunoprecipitated H3K27me3 chromatin, we demonstrated that DNA methylation and polycomb repression co-exist in vivo at this locus. We found this repressive association in 6/6 patient tumor samples of different Gleason score, suggesting a strong interplay of DNA methylation and EZH2 to silence RARβ during prostate tumorigenesis.  相似文献   

12.
13.
Inadequate trophoblastic invasion is considered as one of hallmarks of preeclampsia (PE), which is characterized by newly onset of hypertension (>140/90 mmHg) and proteinuria (>300 mg in a 24‐h urine) after 20 weeks of gestation. Accumulating evidence has indicated that long noncoding RNAs are aberrantly expressed in PE, whereas detailed mechanisms are unknown. In the present study, we showed that lncRNA Taurine upregulated 1 (TUG1) were downregulated in preeclamptic placenta and in HTR8/SVneo cells under hypoxic conditions, together with reduced enhancer of zeste homolog2 (EZH2) and embryonic ectoderm development (EED) expression, major components of polycomb repressive complex 2 (PRC2), as well as activation of Nodal/ALK7 signalling pathway. Mechanistically, we found that TUG1 bound to PRC2 (EZH2/EED) in HTR8/SVneo cells and weakened TUG1/PRC2 interplay was correlated with upregulation of Nodal expression via decreasing H3K27me3 mark at the promoter region of Nodal gene under hypoxic conditions. And activation of Nodal signalling prohibited trophoblast invasion via reducing MMP2 levels. Overexpression of TUG1 or EZH2 significantly attenuated hypoxia‐induced reduction of trophoblastic invasiveness via negative modulating Nodal/ALK7 signalling and rescuing expression of its downstream target MMP2. These investigations might provide some evidence for novel mechanisms responsible for inadequate trophoblastic invasion and might shed some light on identifying future therapeutic targets for PE.  相似文献   

14.
Several microRNAs are associated with carcinogenesis and tumour progression. Herein, our observations suggest both miR24-2 and Pim1 are up-regulated in human liver cancers, and miR24-2 accelerates growth of liver cancer cells in vitro and in vivo. Mechanistically, miR24-2 increases the expression of N6-adenosine-methyltransferase METTL3 and thereafter promotes the expression of miR6079 via RNA methylation modification. Furthermore, miR6079 targets JMJD2A and then increased the tri-methylation of histone H3 on the ninth lysine (H3K9me3). Therefore, miR24-2 inhibits JMJD2A by increasing miR6079 and then increases H3K9me3. Strikingly, miR24-2 increases the expression of Pim1 dependent on H3K9me3 and METTL3. Notably, our findings suggest that miR24-2 alters several related genes (pHistone H3, SUZ12, SUV39H1, Nanog, MEKK4, pTyr) and accelerates progression of liver cancer cells through Pim1 activation. In particular, Pim1 is required for the oncogenic action of miR24-2 in liver cancer. This study elucidates a novel mechanism for miR24-2 in liver cancer and suggests that miR24-2 may be used as novel therapeutic targets of liver cancer.  相似文献   

15.
DNA methylation and polycomb proteins are well-known mediators of epigenetic silencing in mammalian cells. Usually described as mutually exclusive, this statement is today controversial and recent in vitro studies suggest the co-existence of both repressor systems. We addressed this issue in the study of Retinoic Acid Receptor β (RARβ), a tumor suppressor gene frequently silenced in prostate cancer. We found that the RARβ promoter is hypermethylated in all studied prostate tumors and methylation levels are positively correlated with H3K27me3 enrichments. Thus, by using bisulfite conversion and pyrosequencing of immunoprecipitated H3K27me3 chromatin, we demonstrated that DNA methylation and polycomb repression co-exist in vivo at this locus. We found this repressive association in 6/6 patient tumor samples of different Gleason score, suggesting a strong interplay of DNA methylation and EZH2 to silence RARβ during prostate tumorigenesis.  相似文献   

16.
Nuclear receptor-binding SET-domain-containing protein 1 (NSD1), a culprit gene for Sotos syndrome, contains a su(var)3-9, enhancer-of-zeste, trithorax (SET) domain that is responsible for histone methyltransferase activity and other domains such as plant homeodomain (PHD) and proline-tryptophan-tryptophan-proline (PWWP) involved in protein-protein interactions in the C-terminal half of NSD1. To elucidate the function of NSD1 on cell growth, we overexpressed NSD1 in NIH3T3 cells. Cells overexpressing NSD1 grew in the presence of 2% serum, whereas vector transfected cells did not. Overexpression of the C-terminal half of NSD1 but not the N-terminal half of NSD1 also produced cell growth under low serum concentration. Furthermore, overexpression in NIH3T3 of Schizosaccharomyces pombe SET2 which has a SET domain but not PHD or PWWP domains conferred the reduced serum dependence. Thus, the SET domain of NSD1 is involved in cell growth by modulating serum dependence.  相似文献   

17.
18.
19.
We have determined a functional link to the inverse expression of SETDB1 and FosB following anticancer drug treatment. Doxorubicin treatment caused decreased SETDB1 expression and FosB overexpression both at the mRNA and protein levels. The decreased HMTase activity of SETDB1 coincided with altered occupancy across the promoter region of the FosB gene. SETDB1 overexpression decreased the luciferase reporter activity containing the FosB promoter region, but siSETDB1 increased the luciferase reporter activity, suggesting that SETDB1 directly and negatively regulated FosB expression. In addition, MEK inhibitor (PD98059) blocked the SETDB1 regulation of the FosB promoter activity via ERK2 activation during doxorubicin treatment. A microscopic analysis reveals that FosB expression was observed in living cells in spite of doxorubicin treatment. Ectopic FosB/ΔFosB expression increased the number of colonies and the migration of A549 cells compared to that in control. These results suggest that the ERK2-SETDB1-FosB signaling pathway might have an anti-therapeutic regulatory mechanism that increases the transformation and migration activity of cancer cells during anticancer drug treatment.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号