首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
MicroRNA167 (miR167) was shown to cleave auxin responsive factor 8 (ARF8) mRNA in cultured rice cells. MiR167 level was found to be controlled by the presence of auxin in the growth medium. When cells grew in auxin-free medium, miR167 level decreased, resulting in an increase in the level of ARF8 mRNA. Cells growing in the normal growth medium containing auxin showed a reversed trend. It was also shown that expression of OsGH3-2, an rice IAA-conjugating enzyme, was positively regulated by ARF8. Delivery of synthesized miR167 into cells led to decrease of both ARF8 mRNA and OsGH3-2 mRNA. This study provides an evidence in which the exogeneous auxin signal is transduced to OsGH3-2 through miR167 and ARF8 in sequence. This proposed auxin signal transduction pathway, auxin-miR167-ARF8-OsGH3-2, could be, in conjunction with the other microRNA-mediated auxin signals, an important one for responding to exogeneous auxin and for determining the cellular free auxin level which guides appropriate auxin responses.  相似文献   

4.

Improving flower yield through lengthening flowering duration is a primary breeding objective in saffron (Crocus sativus L.). Asexual reproduction in saffron limits biodiversity and conventional breeding. Hence, eliciting flowering-related gene expression by plant growth regulators is one way to achieve this aim. The phytohormones methyl jasmonate (MeJA) and 6-benzyl amino purine (BAP) signals are received by the MADs-box gene family. In this study, to elucidate the role of phytohormones on flower development, plant were treated with BAP (0 and 5 mg L?1), and methyl jasmonate (MeJA) (0, 20, and 100 mM) at three developmental stages of the saffron life cycle. Then, the expression of the SHORT VEGETATIVE PHASE (CsSVP) gene as a MADS-box gene family was assessed in the saffron corm. The activities of antioxidant enzymes, soluble sugar, starch content, and soluble protein content were also measured in corm, leaf, and root tissues. The application of MeJA and BAP treatments resulted in down-regulation of CsSVP expression in the corm during dormancy. At the dormancy stage, catalase, peroxidase activity decreased, and ascorbate peroxidase activity increased following MeJA treatment. In contrast, an increment in catalase and peroxidase activity and reduction of ascorbate peroxidase activity were observed after treatment with MeJA during the flowering stage. This change in enzyme activity is most likely due to flowering, which demands the re-allocation of resources. As flowering is a process heavily influenced by the environment, plants treated with MeJA, which may mimic environmental stress, showed changes in antioxidant enzyme activity. Overall, these results suggested that MeJA and BAP treatments play a significant role in the vegetative-to-reproductive phase change in saffron.

  相似文献   

5.
6.
7.
8.
9.
Methyl jasmonate (MeJA) signalling shares several signal components with abscisic acid (ABA) signalling in guard cells. Cyclic adenosine 5′‐diphosphoribose (cADPR) and cyclic guanosine 3′,5′‐monophosphate (cGMP) are second messengers in ABA‐induced stomatal closure. In order to clarify involvement of cADPR and cGMP in MeJA‐induced stomatal closure in Arabidopsis thaliana (Col‐0), we investigated effects of an inhibitor of cADPR synthesis, nicotinamide (NA), and an inhibitor of cGMP synthesis, LY83583 (LY, 6‐anilino‐5,8‐quinolinedione), on MeJA‐induced stomatal closure. Treatment with NA and LY inhibited MeJA‐induced stomatal closure. NA inhibited MeJA‐induced reactive oxygen species (ROS) accumulation and nitric oxide (NO) production in guard cells. NA and LY suppressed transient elevations elicited by MeJA in cytosolic free Ca2+ concentration ([Ca2+]cyt) in guard cells. These results suggest that cADPR and cGMP positively function in [Ca2+]cyt elevation in MeJA‐induced stomatal closure, are signalling components shared with ABA‐induced stomatal closure in Arabidopsis, and that cADPR is required for MeJA‐induced ROS accumulation and NO production in Arabidopsis guard cells.  相似文献   

10.
11.
12.
Abstract

Exogenous application of 0.1 mM methyl jasmonate (MeJA) throughout seed soaking or fumigation of seedlings could induce resistance against the necrotrophic fungus Alternaria porri f. sp. solani in tomato. MeJA applied at 0.01, 0.1, and 1 mM was found to reduce spore germination and mycelial growth in vitro. This compound at 0.01 and 0.1 mM did not cause toxic responses in the tomato plants; however, ethylene production by seedlings was observed to increase after using of all concentrations. A significant increase in the levels of defense markers such as total phenolics, anthocyanins, and phenylalanine ammonia-lyase activity, in response to exogenous MeJA, was observed. Pretreatment of tomato by soaking the seeds in MeJA or treating them with gaseous MeJA efficiently reduced the development of disease caused by Alternaria only when MeJA was applied at 0.1 mM concentration. Seed priming is an easier method of resistance induction than exposure to gaseous MeJA.  相似文献   

13.
生长素响应因子(auxin response factors,ARFs)是生长素响应机制中的重要元件,其中,ARF5/MONOPTEROS(MP)参与调控许多生长发育过程。该文对近年来国内外有关ARF5/MP的研究进展,以及由ARF5/MP介导的生长素应答通路在拟南芥的胚根原特化、维管组织发育、茎尖发育等过程中的作用以及鉴于ARFs成员之间在结构和功能上的保守性等研究进展进行综述,为阐明植物体对生长素响应的分子机理提供参考。  相似文献   

14.
Protein redox regulation is increasingly recognized as an important switch of protein activity in yeast, bacteria, mammals and plants. In this study, we identified proteins with potential thiol switches involved in jasmonate signaling, which is essential for plant defense. Methyl jasmonate (MeJA) treatment led to enhanced production of hydrogen peroxide in Arabidopsis leaves and roots, indicating in vivo oxidative stress. With monobromobimane (mBBr) labeling to capture oxidized sulfhydryl groups and 2D gel separation, a total of 35 protein spots that displayed significant redox and/or total protein expression changes were isolated. Using LC–MS/MS, the proteins in 33 spots were identified in both control and MeJA-treated samples. By comparative analysis of mBBr and SyproRuby gel images, we were able to determine many proteins that were redox responsive and proteins that displayed abundance changes in response to MeJA. Interestingly, stress and defense proteins constitute a large group that responded to MeJA. In addition, many cysteine residues involved in the disulfide dynamics were mapped based on tandem MS data. Identification of redox proteins and their cysteine residues involved in the redox regulation allows for a deeper understanding of the jasmonate signaling networks.  相似文献   

15.
Sun J  Chen Q  Qi L  Jiang H  Li S  Xu Y  Liu F  Zhou W  Pan J  Li X  Palme K  Li C 《The New phytologist》2011,191(2):360-375
The subcellular distribution of the PIN-FORMED (PIN) family of auxin transporters plays a critical role in auxin gradient-mediated developmental processes, including lateral root formation and gravitropic growth. Here, we report two distinct aspects of CORONATINE INSENSITIVE 1 (COI1)- and AUXIN RESISTANT 1 (AXR1)-dependent methyl jasmonate (MeJA) effects on PIN2 subcellular distribution: at lower concentration (5 μM), MeJA inhibits PIN2 endocytosis, whereas, at higher concentration (50 μM), MeJA reduces PIN2 accumulation in the plasma membrane. We show that mutations of ASA1 (ANTHRANILATE SYNTHASE a1) and the TIR1/AFBs (TRANSPORT INHIBITOR RESPONSE 1/AUXIN-SIGNALING F-BOX PROTEINs) auxin receptor genes impair the inhibitory effect of 5 μM MeJA on PIN2 endocytosis, suggesting that a lower concentration of jasmonate inhibits PIN2 endocytosis through interaction with the auxin pathway. In contrast, mutations of ASA1 and the TIR1/AFBs auxin receptor genes enhance, rather than impair, the reduction effect of 50 μM MeJA on the plasma membrane accumulation of PIN2, suggesting that this action of jasmonate is independent of the auxin pathway. In addition to the MeJA effects on PIN2 endocytosis and plasma membrane residence, we also show that MeJA alters lateral auxin redistribution on gravi-stimulation, and therefore impairs the root gravitropic response. Our results highlight the importance of jasmonate-auxin interaction in the coordination of plant growth and the adaptation response.  相似文献   

16.
Tan  Junping  Han  Muxian  Mao  Dun  Cheng  Shuiyuan  Ye  Jiabao  Liu  Xiaomeng  Zhang  Xian  Zheng  Jiarui  Xu  Feng  Chen  Zexiong  Zhang  Weiwei  Liao  Yongling 《Plant Molecular Biology Reporter》2022,40(1):81-94
Introduction

 Terpene trilactones (TTLs) are one of the main active ingredients of Ginkgo biloba. Owing to TTL’s unique chemical structure, it is difficult to increase TTL content through chemical and biological methods. Studying its regulatory mechanism is important in the G. biloba industry.

Results

The effect of exogenous methyl jasmonate (MeJA) on the physiological and molecular mechanism of TTL biosynthesis was studied. These results showed that MeJA treatment could improve the TTL contents, soluble sugar, starch, soluble protein, endogenous hormones (ZT, GA3, IAA, and ABA), antioxidant enzymes (catalase, peroxidase, and superoxide dismutase), and the efficiency of photosynthesis in G. biloba leaves. A total of 100 differentially expressed genes (DEGs) were identified between the control group and MeJA treatment through RNA-seq analysis. The results indicated that exogenous MeJA treatment upregulated the expression levels of the following genes: BMY (beta-amylase) in the starch and sucrose metabolic pathway; PEX7 (peroxin-7) in the peroxisome pathway; psbA (photosystem II reaction center D1 protein), psbC (photosystem II CP43 chlorophyll apoprotein), psaA (photosystem I P700 chlorophyll a apoprotein A1), and petF (photosynthetic electron transport ferredoxin) in the photosynthesis pathway; and CYP450 (Gb-16765) (cytochromeP450).

Conclusions

Exogenous MeJA treatment can promote physiological indexes (photosynthetic efficiency, starch, sucrose, antioxidant enzyme activities, etc.) and then regulating differential genes, thus controlling the synthesis of TTLs.

  相似文献   

17.
Auxin plays a very important role in plant growth and development. Those genes that are specifically induced by auxin within minutes of exposure to the hormone are referred to as early/primary auxin-responsive genes, mainly including the auxin/indole-3-acetic acid (Aux/IAA), the small auxin-up RNA (SAUR), and the GH3 gene families. So far, GH3 genes have been identified in various plant species including soybean, Arabidopsis, rice, tobacco, pungent pepper, sweet orange, pine, and moss. Twenty members of GH3 family were identified in Arabidopsis and these genes were classified into three groups (Group I–III) based on their sequence similarities and substrate specificities. GH3s belong to acyl adenylate-forming firefly luciferase superfamily and can catalyze adenylation of specific substrates. Group I adenylates jasmonic acid (JA), and Group II adenylates indole-3-acetic acid (IAA) and salicylic acid (SA), respectively. Because of the presence of Auxin-Responsive Elements (AuxRE) in the GH3s’ promoter regions, Auxin Response Factors (ARFs) are able to bind to the AuxRE and regulate expression of some GH3s, which in turn modulate the auxin homeostasis. Identification of GH3 mutants in Arabidopsis reveals the function of GH3s in hypocotyl elongation under different light conditions, root growth, stress adaptation, sensitivity to MeJA, or susceptibility to P. syringae. Taken together, GH3s may be linkers among auxin, JA, SA and light signal transduction pathways.  相似文献   

18.
It was well known that auxin is critical for anther/pollen grain development, however, the clear distribution and detailed effects of auxin during floral development are still unclear. We have shown here that, through analyzing GUS activities of Arabidopsis lines harboring auxin response elements DR5-GUS, auxin was mainly accumulated in the anther during flower stages 10–12. Further studies employing the indoleacetic acid–lysine synthetase (iaaL) coding gene from Pseudomonas syringae subsp. savastanoi under control of the promoter region of Arabidopsis phosphatidylinositol monophosphate 5-kinase 1 gene, which conducts the anther filament-specific expression, showed that block of auxin flow of filaments resulted in shortened filaments and significantly defective pollen grains. Similar phenotype was observed in tobacco plants transformed with the same construct, confirming the effects of auxin flow in filaments on anther development. Detailed studies further revealed that the meiosis process of pollen grain was normal while the mitosis at later stage was significantly defected, indicating the effects of auxin flow in filaments on pollen grain mitosis process. Analysis employing [14C]IAA, as well as the observation on the expression of AtPIN1, coding for auxin efflux carrier, demonstrated the presence of polar auxin transport in anther filaments and pollen grains.  相似文献   

19.
The effects of methyl jasmonate (MeJA) in relation to abscisic acid (ABA) on different phases of somatic embryogenesis were studied in Medicago sativa L. Different concentrations of both the growth inhibitors (0.0, 0.5, 5.0, 50.0 and 500.0 μM) were tested in five distinct phases of somatic embryogenesis, viz., induction, proliferation, differentiation, maturation and regeneration. Like ABA, MeJA also inhibited callus induction, callus growth, proliferation of embryogenic suspension as well as germination and conversion of somatic embryos. However, its inhibitory effects on various phases of somatic embryogenesis were less pronounced as compared to that due to ABA. In contrast to ABA, MeJA did not have any significant influence on the development of somatic embryos when applied in the differentiation phase. The study showed that ABA used routinely as an inducer of somatic embryo maturation in M. sativa could not be replaced by MeJA.  相似文献   

20.
Glutathione (GSH) has been shown to negatively regulate methyl jasmonate (MeJA)-induced stomatal closure. We investigated the roles of GSH in MeJA signaling in guard cells using an Arabidopsis mutant, cad2-1, that is deficient in the first GSH biosynthesis enzyme, γ-glutamylcysteine synthetase. MeJA-induced stomatal closure and decreased GSH contents in guard cells. Decreasing GSH by the cad2-1 mutation enhanced MeJA-induced stomatal closure. Depletion of GSH by the cad2-1 mutation or increment of GSH by GSH monoethyl ester did not affect either MeJA-induced production of reactive oxygen species (ROS) or MeJA-induced cytosolic alkalization in guard cells. MeJA and abscisic acid (ABA) induced stomatal closure and GSH depletion in atrbohD and atrbohF single mutants but not in the atrbohD atrbohF double mutant. Moreover, exogenous hydrogen peroxide induced stomatal closure but did not deplete GSH in guard cells. These results indicate that GSH affects MeJA signaling as well as ABA signaling and that GSH negatively regulates a signal component other than ROS production and cytosolic alkalization in MeJA signal pathway of Arabidopsis guard cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号