首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Introduction: Chronic obstructive pulmonary disease (COPD) is a heterogeneous set of disorders, characterized by airflow limitation, and reduced lung function. Despite increasing knowledge regarding its pathophysiology, there has been limited advancement in therapeutics and the current treatment strategy is symptom management and prevention of exacerbations.

Areas covered: Biomarkers represent important tools for the implementation of precision medicine. As fundamental molecules of all living processes, proteins could provide crucial information about how genes interact with the environment. Proteomics studies could act as important tools in identifying reliable biomarkers to enable a more precise therapeutic approach. In this review, we will explore the most promising blood and sputum protein biomarkers in COPD that have been consistently reported in the literature.

Expert commentary: Given the complexity of COPD, no single protein biomarker has been able to improve the outcomes of COPD patients. According to preliminary studies, precision medicine in COPD will likely require a combination of different proteins in a biomarker panel for clinical translation. With advancements in current mass spectrometry techniques, an enhancement in the identification of new biomarkers will be observed, and improvements in sequence database search can fill in potential gaps between biomarker discovery and patient care.  相似文献   

2.
Over the last few years, several newly developed immune-based cancer therapies have been shown to induce clinical responses in significant numbers of patients. As a result, there is a need to identify immune biomarkers capable of predicting clinical response. If there were laboratory parameters that could define patients with improved disease outcomes after immunomodulation, product development would accelerate, optimization of existing immune-based treatments would be facilitated and patient selection for specific interventions might be optimized. Although there are no validated cancer immunologic biomarkers that are predictive of clinical response currently in widespread use, there is much published literature that has informed investigators as to which markers may be the most promising. Population-based studies of endogenous tumor immune infiltrates and gene expression analyses have identified specific cell populations and phenotypes of immune cells that are most likely to mediate anti-tumor immunity. Further, clinical trials of cancer vaccines and other cancer directed immunotherapy have identified candidate immunologic biomarkers that are statistically associated with beneficial clinical outcomes after immune-based cancer therapies. Biomarkers that measure the magnitude of the Type I immune response generated with immune therapy, epitope spreading, and autoimmunity are readily detected in the peripheral blood and, in clinical trials of cancer immunotherapy, have been associated with response to treatment.  相似文献   

3.
The discovery of cell‐free microRNAs (miRNAs) in serum, plasma and other body fluids has yielded an invaluable potential source of non‐invasive biomarkers for cancer and other non‐malignant diseases. miRNAs in the blood and other body fluids are highly stable in biological samples and are resistant to environmental conditions, such as freezing, thawing or enzymatic degradation, which makes them convenient as potential biomarkers. In addition, they are more easily sampled than tissue miRNAs. Altered levels of cell‐free miRNAs have been found in every type of cancer analysed, and increasing evidence indicates that they may participate in carcinogenesis by acting as cell‐to‐cell signalling molecules. This review summarizes the biological characteristics and mechanisms of release of cell‐free miRNAs that make them promising candidates as non‐invasive biomarkers of cancer.  相似文献   

4.
BACKGROUNDS: AUDIPOC is a nationwide clinical audit that describes the characteristics, interventions and outcomes of patients admitted to Spanish hospitals because of an exacerbation of chronic obstructive pulmonary disease (ECOPD), assessing the compliance of these parameters with current international guidelines. The present study describes hospital resources, hospital factors related to case recruitment variability, patients' characteristics, and adherence to guidelines. METHODOLOGY/PRINCIPAL FINDINGS: An organisational database was completed by all participant hospitals recording resources and organisation. Over an 8-week period 11,564 consecutive ECOPD admissions to 129 Spanish hospitals covering 70% of the Spanish population were prospectively identified. At hospital discharge, 5,178 patients (45% of eligible) were finally included, and thus constituted the audited population. Audited patients were reassessed 90 days after admission for survival and readmission rates. A wide variability was observed in relation to most variables, hospital adherence to guidelines, and readmissions and death. Median inpatient mortality was 5% (across-hospital range 0-35%). Among discharged patients, 37% required readmission (0-62%) and 6.5% died (0-35%). The overall mortality rate was 11.6% (0-50%). Hospital size and complexity and aspects related to hospital COPD awareness were significantly associated with case recruitment. Clinical management most often complied with diagnosis and treatment recommendations but rarely (<50%) addressed guidance on healthy life-styles. CONCLUSIONS/SIGNIFICANCE: The AUDIPOC study highlights the large across-hospital variability in resources and organization of hospitals, patient characteristics, process of care, and outcomes. The study also identifies resources and organizational characteristics associated with the admission of COPD cases, as well as aspects of daily clinical care amenable to improvement.  相似文献   

5.
Molecular imaging methods allow the noninvasive detection and localization of specific molecules. Agents that report on molecular disease biomarkers can be used to diagnose and monitor disease. Many inflammatory diseases have molecular signatures within altered tissues. Although tissue biopsy is still the gold standard for detecting these signatures, several molecular imaging markers have been developed. Pharmacologic agents that block specific immune molecules have recently entered the clinic, and these drugs have already transformed the way we care for patients with immune-mediated diseases. The use of immunomodulatory drugs is usually guided by clinical assessment of the patient's response. Unfortunately, clinical assessment may miss the signs of inflammation, and many of the serologic markers of immune-mediated diseases correlate poorly with the underlying inflammatory activity within target tissues. Molecular imaging methods have the potential to improve our ability to detect and characterize tissue inflammation. We discuss some of the molecular signatures of immune activation and review molecular imaging methods that have been developed to detect active tissue inflammation.  相似文献   

6.

Circular RNAs(circRNAs) are a large family of RNAs shaping covalently closed ring-like molecules and have become a hotspot with thousands of newly published studies. Stem cells are undifferentiated cells and have great potential in medical treatment due to their self-renewal ability and differentiation capacity. Abundant researches have unveiled that circRNAs have unique expression profile during the differentiation of stem cells and could serve as promising biomarkers of these cells. There are key circRNAs relevant to the differentiation, proliferation, and apoptosis of stem cells with certain mechanisms such as sponging miRNAs, interacting with proteins, and interfering mRNA translation. Moreover, several circRNAs have joined in the interplay between stem cells and lymphocytes. Our review will shed lights on the emerging roles of circRNAs in regulating the fate of diverse stem cells.

  相似文献   

7.
急性呼吸窘迫综合征(ARDS)和急性肺损伤(ALI)多由低氧性呼吸衰竭引起,导致高通透性肺水肿,临床上有较高的发病率与死亡率。近十年来,针对血浆和支气管肺泡灌洗液中相关生物标记物的研究为探索急性肺损伤的病理生理机制指明了新的方向。个别生物标记物已在一些大型、多中心ARDS试验中得到证实。但迄今仍没有一个或一组生物标记物常规应用于临床。随着人类对ALI发病机制理解的进一步深入,或许不久的将来,生物标记物会真正应用于评估疾病的严重程度和预后。本文将概述近年来ALI相关生物标记物的研究进展。  相似文献   

8.
The technology platforms for proteome analysis have advanced considerably over the last few years. Driven by these advancements in technology, the number of studies on the analysis of the proteome/peptidome, with the aim of defining clinically relevant biomarkers, has substantially risen. Urine has become an increasingly relevant target for clinically oriented proteome analysis; the first clinical trials based on urinary proteomics have been initiated, and studies including several hundred patients have been published. In this article, we summarize the relevant technical aspects in biomarkers discovery and the course from biomarker discovery or ‘potential’ biomarkers to those that have been validated and are clinically important. We discuss experimental design based on the statistics calculated to produce a clinically important end point. We present several examples of proteomic studies that have defined urinary biomarkers for clinical applications, focusing on capillary electrophoresis coupled to mass spectrometry as a technology. Finally, current challenges and considerations for future studies will be discussed.  相似文献   

9.
Enhanced blood levels of copeptin correlate with poor clinical outcomes after acute critical illness. This study aimed to compare the prognostic performances of plasma concentrations of copeptin and other biomarkers like myelin basic protein, glial fibrillary astrocyte protein, S100B, neuron-specific enolase, phosphorylated axonal neurofilament subunit H, Tau and ubiquitin carboxyl-terminal hydrolase L1 in severe traumatic brain injury. We recruited 102 healthy controls and 102 acute patients with severe traumatic brain injury. Plasma concentrations of these biomarkers were determined using enzyme-linked immunosorbent assay. Their prognostic predictive performances of 6-month mortality and unfavorable outcome (Glasgow Outcome Scale score of 1–3) were compared. Plasma concentrations of these biomarkers were statistically significantly higher in all patients than in healthy controls, in non-survivors than in survivors and in patients with unfavorable outcome than with favorable outcome. Areas under receiver operating characteristic curves of plasma concentrations of these biomarkers were similar to those of Glasgow Coma Scale score for prognostic prediction. Except plasma copeptin concentration, other biomarkers concentrations in plasma did not statistically significantly improve prognostic predictive value of Glasgow Coma Scale score. Copeptin levels may be a useful tool to predict long-term clinical outcomes after severe traumatic brain injury and have a potential to assist clinicians.  相似文献   

10.
Mitochondria are semi-autonomous organelles that play essential roles in cellular metabolism and programmed cell death pathways. Genomic, functional and structural mitochondrial alterations have been associated with cancer. Some of those alterations may provide a selective advantage to cells, allowing them to survive and grow under stresses created by oncogenesis. Due to the specific alterations that occur in cancer cell mitochondria, these organelles may provide promising targets for cancer therapy. The development of drugs that specifically target metabolic and mitochondrial alterations in tumor cells has become a matter of interest in recent years, with several molecules undergoing clinical trials. This review focuses on the most relevant mitochondrial alterations found in tumor cells, their contribution to cancer progression and survival, and potential usefulness for stratification and therapy.  相似文献   

11.
Lack of sensitivity and specificity of current tumor markers has intensified research efforts to find new biomarkers. The identification of potential tumor markers in human body fluids is hampered by large variability and complexity of both control and patient samples, laborious biochemical analyses, and the fact that the identified proteins are unlikely produced by the diseased cells but are due to secondary body defense mechanisms. In a new approach presented here, we eliminate these problems by performing proteomic analysis in a prostate cancer xenograft model in which human prostate cancer cells form a tumor in an immune-incompetent nude mouse. Using this concept, proteins present in mouse serum that can be identified as human will, by definition, originate from the human prostate cancer xenograft and might have potential diagnostic and prognostic value. Using one-dimensional gel electrophoresis, liquid chromatography, and mass spectrometry, we identified tumor-derived human nm23/nucleoside-diphosphate kinase (NME) in the serum of a nude mouse bearing the androgen-independent human prostate cancer xenograft PC339. NME is known to be involved in the metastatic potential of several tumor cells, including prostate cancer cells. Furthermore we identified six human enzymes involved in glycolysis (fructose-bisphosphate aldolase A, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, alpha enolase, and lactate dehydrogenases A and B) in the serum of the tumor-bearing mice. The presence of human NME and glyceraldehyde-3-phosphate dehydrogenase in the serum of PC339-bearing mice was confirmed by Western blotting. Although the putative usefulness of these proteins in predicting prognosis of prostate cancer remains to be determined, the present data illustrate that our approach is a promising tool for the focused discovery of new prostate cancer biomarkers.  相似文献   

12.
Alzheimer’s disease (AD) is by far the most common dementing illness of late life and is increasing with the ever-growing number of older adults, in particular, in developed countries. The disease is often referred to as the “Long-Goodbye” because the person with the illness slowly becomes lost to everyone a long time before the body finally gives out. Being able to detect AD earlier on during the course of the disease offers better prospects for the future, for AD individuals, their families and friends as well as on the economy, as a whole. Unfortunately, such a detection technique is not yet, available. However, there are a number of promising biological markers (biomarkers) that correlate well with clinical cognitive tests of individuals and/or postmortem histopathological manifestations of the disease, especially when at least two markers are used for the diagnosis. Biosensors are tools that combine a biochemical binding element to a signal conversion unit and are already being used in the study of some AD biomarkers. However, their use in clinical diagnosis remains a challenge. Introduction of nanotechnology leading to nanobiosensors has several potential advantages over other clinical and/or existing analytical tools, including increased assay speed, flexibility, reduced cost of diagnostic testing, potential to deliver molecular diagnostic tools to family general practitioners, and other health care systems. Even more important, nano-based assays have the potential to detect target proteins at attomolar concentration level. They are, therefore, being increasingly exploited for the detection of early metabolic changes associated with diseases. Because brain damage is irreversible, the use of nanotechnology is particularly important in AD and other neurodegenerative disorders. Nanosensors can also facilitate and enable pointofcare-testing (POCT). This article reviews the basic biochemical processes that lead to AD pathology, current biomarkers for AD, and the current role of nanosensor technology for the study of AD biomarkers. Furthermore, it discusses the huge potential of nanosensing to deliver new molecular diagnostic strategies to AD research.  相似文献   

13.

Background

The electronic nose (e-nose) detects volatile organic compounds (VOCs) in exhaled air. We hypothesized that the exhaled VOCs print is different in stable vs. exacerbated patients with chronic obstructive pulmonary disease (COPD), particularly if the latter is associated with airway bacterial infection, and that the e-nose can distinguish them.

Methods

Smell-prints of the bacteria most commonly involved in exacerbations of COPD (ECOPD) were identified in vitro. Subsequently, we tested our hypothesis in 93 patients with ECOPD, 19 of them with pneumonia, 50 with stable COPD and 30 healthy controls in a cross-sectional case-controlled study. Secondly, ECOPD patients were re-studied after 2 months if clinically stable. Exhaled air was collected within a Tedlar bag and processed by a Cynarose 320 e-nose. Breath-prints were analyzed by Linear Discriminant Analysis (LDA) with “One Out” technique and Sensor logic Relations (SLR). Sputum samples were collected for culture.

Results

ECOPD with evidence of infection were significantly distinguishable from non-infected ECOPD (p = 0.018), with better accuracy when ECOPD was associated to pneumonia. The same patients with ECOPD were significantly distinguishable from stable COPD during follow-up (p = 0.018), unless the patient was colonized. Additionally, breath-prints from COPD patients were significantly distinguished from healthy controls. Various bacteria species were identified in culture but the e-nose was unable to identify accurately the bacteria smell-print in infected patients.

Conclusion

E-nose can identify ECOPD, especially if associated with airway bacterial infection or pneumonia.  相似文献   

14.
The use of biomarkers in medicine lies in their ability to detect disease and support diagnostic and therapeutic decisions. New research and novel understanding of the molecular basis of the disease reveals an abundance of exciting new biomarkers who present a promise for use in the everyday clinical practice. The past fifteen years have seen the emergence of numerous clinical applications of several new molecules as biologic markers in the research field relevant to interstitial lung diseases (translational research). The scope of this review is to summarize the current state of knowledge about serum biomarkers in interstitial lung diseases and their potential value as prognostic and diagnostic tools and present some of the future perspectives and challenges.  相似文献   

15.
Venous thromboembolism (VTE) is a cardiovascular disorder frequently diagnosed among cancer patients. Aside from being common, VTE severely deteriorates the prognosis of these patients as they face a higher risk of morbidity and mortality, which makes clinical tools able to identify the patients more prompt to thrombogenesis very attractive. Over the years, several genetic polymorphisms have been linked with VTE susceptibility in the general population. However, their clinical usefulness as predictive biomarkers for cancer-related VTE is yet unclear. Furthermore, as a two-way association between cancer and VTE is well-recognized, with haemostatic components fuelling tumour progression, haemostatic gene polymorphisms constitute potential cancer predictive and/or prognostic biomarkers as well. Thus, in this article, we review the existing evidence on the role of these polymorphisms on cancer-related VTE and their impact on cancer onset and progression. Despite the promising findings, the existing studies had inconsistent results most likely due to their limited statistical power and population heterogeneity. Future studies are therefore required to clarify the role of these polymorphisms in setting of malignancy.  相似文献   

16.
17.
Parenchymal lung diseases comprise a wide variety of diseases, with different etiologies, pathogeneses and prognoses. This perspective provides an overview of two different disease types: chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis. Chronic obstructive pulmonary disease, which is related to smoking, is one of the leading causes of chronic morbidity and mortality around the world, being characterized by airway obstruction and parenchymal lung damage (emphysema). Idiopathic pulmonary fibrosis of unknown etiology is classified as one of the most important idiopathic interstitial pneumonias and is connected to patchy but progressive lung fibrosis. Both diseases are generally diagnosed late and respond poorly to medical therapies. Although numerous biomarkers have been proposed for these diseases, they have not been validated or implemented into clinical practice. This perspective emphasizes some typical features of these diseases with different types of lung damage, how they are reflected in different samples, as well as potential advances and problems of current and future nonbiased proteomic approaches.  相似文献   

18.
Although much research has been done related to biomarker discovery for tuberculosis infection, a set of biomarkers that can discriminate between active and latent TB diseases remains elusive. In the current study we correlate clinical aspects of TB disease with changes in the immune response as determined by biomarkers detected in plasma. Our study measured 18 molecules in human plasma in 17 patients with active disease (APTB), 14 individuals with latent tuberculosis infection (LTBI) and 16 uninfected controls (CTRL). We found that active tuberculosis patients have increased plasma levels of IL-6, IP-10, TNF-α, sCD163 and sCD14. Statistical analysis of these biomarkers indicated that simultaneous measurement of sCD14 and IL-6 was able to diagnose active tuberculosis infection with 83% accuracy. We also demonstrated that TNF-α and sCD163 were correlated with tuberculosis severity. We showed that the simultaneous detection of both plasma sCD14 and IL-6 is a promising diagnostic approach to identify APTB, and further, measurement of TNF-α and sCD163 can identify the most severe cases of tuberculosis.  相似文献   

19.
The poor prognosis of cholangiocarcinoma (CCA) is in part due to late diagnosis, which is currently achieved by a combination of clinical, radiological and histological approaches. Available biomarkers determined in serum and biopsy samples to assist in CCA diagnosis are not sufficiently sensitive and specific. Therefore, the identification of new biomarkers, preferably those obtained by minimally invasive methods, such as liquid biopsy, is important. The development of innovative technologies has permitted to identify a significant number of genetic, epigenetic, proteomic and metabolomic CCA features with potential clinical usefulness in early diagnosis, prognosis or prediction of treatment response. Potential new candidates must be rigorously evaluated prior to entering routine clinical application. Unfortunately, to date, no such biomarker has achieved validation for these purposes. This review is an up-to-date of currently used biomarkers and the candidates with promising characteristics that could be included in the clinical practice in the next future. This article is part of a Special Issue entitled: Cholangiocytes in Health and Disease edited by Jesus Banales, Marco Marzioni, Nicholas LaRusso and Peter Jansen.  相似文献   

20.
Novel biomarkers for cancer diagnosis and therapy selection are urgently needed to facilitate early detection and improve therapy outcomes. We have previously identified a novel phosphorylation site at serine 506 (PS506) on topoisomerase-I (topo-I) and have shown that it is widely expressed in cell lines derived from several cancers, including lung cancer, but is low in cell lines derived from non-cancerous tissues. Here we have investigated how PS506 expression in lung tissue specimens correlates with their malignant status. We find that PS506 expression is significantly elevated in malignant tumors of non-small cell lung cancer (NSCLC) compared to adjacent, non-cancerous lung tissue and benign lung tumors. PS506 expression was up to 6-fold higher in malignant specimens than in paired non-malignant tissue. Using the well-characterized NIH/NCI 60-cell line panel, we correlate the most elevated expression levels of PS506 in lung, ovarian, and colon cancer cells lines with increased sensitivity to camptothecin, a plant alkaloid that targets topo-I. This is consistent with our earlier studies in a smaller sampling of cell lines and with our finding that PS506 increases topo-I DNA binding. Two widely used chemotherapeutic drugs for ovarian and colon cancer, topotecan and irinotecan, respectively, are derived from camptothecin. Irinotecan has also displayed efficacy in clinical trials of NSCLC. Our results suggest that elevated PS506 expression may correlate with clinical chemosensitivity to these agents in ovarian, colon, and NSCLC. PS506 may therefore serve as a biomarker for diagnosis or therapy selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号