首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文简要介绍植物与病原菌在细胞壁层面上的相互作用,并从植物细胞对受侵过程中细胞壁损伤的感知、细胞壁损伤引起植物抗病信号途径的活化、植物细胞壁防卫反应的分子机制等方面重点概述植物细胞壁抗性及其分子机制。  相似文献   

2.
The plant cell wall is involved in different biological processes like cell morphogenesis and response to biotic/abiotic stress. Functional integrity of the wall is apparently being maintained during these processes by changing structure/composition and coordinating cell wall with cellular metabolism. In S.cerevisiae a well-characterized mechanism exists that is maintaining functional integrity of yeast the cell wall during similar processes. During the last years it has become obvious that plants have evolved a mechanism to monitor and maintain functional integrity of their cell walls. However, our understanding of the mechanism is rather limited. The available evidence suggests that similar signaling cascades may be involved and particular protein activities may be conserved between plants and yeast. Here we review the available evidence briefly and highlight similarities between yeast and plants that could help us to understand the mode of action of the signaling cascades maintaining plant cell wall integrity.  相似文献   

3.
Levin DE 《Genetics》2011,189(4):1145-1175
The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed.  相似文献   

4.
为了更清楚地了解MAPK信号通路中的细胞壁完整性信号通路(cell wall integrity,CWI)和高渗透压甘油(high-osmolarity glycerol pathway,HOG)信号通路对斑玉蕈菌丝成熟、原基形成和子实体发育过程的影响及调节作用,对MAPK信号通路中的CWI和HOG信号通路基因在斑玉蕈不同菌丝培养时间(40、60、80和100d)和不同生长发育关键时期(24h、菌丝恢复期、菌丝转色期、原基期和子实体期)的表达模式进行分析,以期揭示这两条信号通路基因参与调节斑玉蕈菌丝的生长、子实体的形成和发育的作用。在斑玉蕈的CWI和HOG信号通路中经分析鉴定一共获得了15个关键基因。CWI信号通路基因表达分析表明:在菌丝培养的40-100d的过程中,大部分CWI信号通路基因在第60天时表达量最高,其中rho1ssk1ssk2ste20的基因表达量上调了2-5倍,在第80-100天时出现持续下降。在HOG信号通路中的大部分基因也在菌丝培养的第60天表达量达到最高。其中sho1ste20ssk1ssk2基因的表达量上调最为显著,而hog1基因的表达量在菌丝培养的第40-100天呈持续下降。子实体形成过程中两条通路的大部分基因在原基形成时期表达量最高,而在子实体时期表达量下调。其中HOG信号通路中的ssk2基因表达量上调最为显著。以上结果说明在菌丝生长过程中第60天时菌丝细胞生长增殖最为旺盛,而在第80天开始菌丝细胞基本开始停止生长,菌丝也逐渐达到成熟。同时在菌丝增殖生长过程中,斑玉蕈持续地上调CWI信号通路基因的表达来调控菌丝细胞壁的完整性,从而控制菌丝细胞壁的形成。其中bck1mkk1slt2基因可能对斑玉蕈菌丝细胞的分裂增殖和细胞壁的形成以及诱导子实体形成起到关键作用。  相似文献   

5.

Background

Plant cell walls form the interface between the cells and their environment. They perform different functions, such as protecting cells from biotic and abiotic stress and providing structural support during development. Maintenance of the functional integrity of cell walls during these different processes is a prerequisite that enables the walls to perform their particular functions. The available evidence suggests that an integrity maintenance mechanism exists in plants that is capable of both detecting wall integrity impairment caused by cell wall damage and initiating compensatory responses to maintain functional integrity. The responses involve 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonic acid, reactive oxygen species and calcium-based signal transduction cascades as well as the production of lignin and other cell wall components. Experimental evidence implicates clearly different signalling molecules, but knowledge regarding contributions of receptor-like kinases to this process is less clear. Different receptor-like kinase families have been considered as possible sensors for perception of cell wall damage; however, strong experimental evidence that provides insights into functioning exists for very few kinases.

Scope and Conclusions

This review examines the involvement of cell wall integrity maintenance in different biological processes, defines what constitutes plant cell wall damage that impairs functional integrity, clarifies which stimulus perception and signal transduction mechanisms are required for integrity maintenance and assesses the available evidence regarding the functions of receptor-like kinases during cell wall integrity maintenance. The review concludes by discussing how the plant cell wall integrity maintenance mechanism could form an essential component of biotic stress responses and of plant development, functions that have not been fully recognized to date.  相似文献   

6.
Yeast adaptation to conditions in which cell wall integrity is compromised mainly relies on the cell wall integrity (CWI) mitogen-activated protein kinase (MAPK) pathway. Zymolyase, a mixture of cell wall-digesting enzymes, triggers a peculiar signaling mechanism in which activation of the CWI pathway is dependent on the high-osmolarity glycerol MAPK pathway. We have identified inhibitors of the principal enzyme activities present in zymolyase and tested their effect on the activation of the MAPK of the CWI pathway, Slt2/Mpk1. Eventually, only β-1,3-glucanase and protease activities were essential to elicit Slt2 activation and confer lytic power to zymolyase. Moreover, we show that the osmosensor Hkr1 is required for signaling, being the most upstream element identified to date.  相似文献   

7.
8.
The trimeric SNF1 complex from Saccharomyces cerevisiae, a homolog of mammalian AMP-activated kinase, has been primarily implicated in signaling for the utilization of alternative carbon sources to glucose. We here find that snf1 deletion mutants are hypersensitive to different cell wall stresses, such as the presence of Calcofluor white, Congo red, Zymolyase or the glucan synthase inhibitor Caspofungin in the growth medium. They also have a thinner cell wall. Caspofungin treatment triggers the phosphorylation of the catalytic Snf1 kinase subunit at Thr210 and removal of this phosphorylation site by mutagenesis (Snf1-T210A) abolishes the function of Snf1 in cell wall integrity. Deletion of the PFK1 gene encoding the α-subunit of the heterooctameric yeast phosphofructokinase suppresses the cell wall phenotypes of a snf1 deletion, which suggests a compensatory effect of central carbohydrate metabolism. Epistasis analyses with mutants in cell wall integrity (CWI) signaling confirm that the SNF1 complex and the CWI pathway independently affect yeast cell integrity.  相似文献   

9.
10.
11.
The architecture of the plant cell wall is highly dynamic, being substantially re‐modeled during growth and development. Cell walls determine the size and shape of cells and contribute to the functional specialization of tissues and organs. Beyond the physiological dynamics, the wall structure undergoes changes upon biotic or abiotic stresses. In this review several cell wall traits, mainly related to pectin, one of the major matrix components, will be discussed in relation to plant development, immunity and industrial bioconversion of biomass, especially for energy production. Plant cell walls are a source of oligosaccharide fragments with a signaling function for both development and immunity. Sensing cell wall damage, sometimes through the perception of released damage‐associated molecular patterns (DAMPs), is crucial for some developmental and immunity responses. Methodological advances that are expected to deepen our knowledge of cell wall (CW) biology will also be presented.  相似文献   

12.
13.
14.
15.
The fungal cell wall plays an essential role in maintaining cell morphology, transmitting external signals, controlling cell growth, and even virulence. Relaxation and irreversible stretching of the cell wall are the prerequisites of cell division and development, but they also inevitably cause cell wall stress. Both Mitotic Exit Network (MEN) and Cell Wall Integrity (CWI) are signaling pathways that govern cell division and cell stress response, respectively, how these pathways cross talk to govern and coordinate cellular growth, development, and pathogenicity remains not fully understood. We have identified MoSep1, MoDbf2, and MoMob1 as the conserved components of MEN from the rice blast fungus Magnaporthe oryzae. We have found that blocking cell division results in abnormal CWI signaling. In addition, we discovered that MoSep1 targets MoMkk1, a conserved key MAP kinase of the CWI pathway, through protein phosphorylation that promotes CWI signaling. Moreover, we provided evidence demonstrating that MoSep1-dependent MoMkk1 phosphorylation is essential for balancing cell division with CWI that maintains the dynamic stability required for virulence of the blast fungus.  相似文献   

16.
Cohesin is a conserved chromatin-binding multisubunit protein complex involved in diverse chromosomal transactions such as sister-chromatid cohesion, chromosome condensation, regulation of gene expression, DNA replication, and repair. While working with a budding yeast temperature-sensitive mutant, mcd1-1, defective in a cohesin subunit, we observed that it was resistant to zymolyase, indicating an altered cell wall organization. The budding yeast cell wall is a strong but elastic structure essential for maintenance of cell shape and protection from extreme environmental challenges. Here, we show that the cohesin complex plays an important role in cell wall maintenance. Cohesin mutants showed high chitin content in the cell wall and sensitivity to multiple cell wall stress-inducing agents. Interestingly, temperature-dependent lethality of cohesin mutants was osmoremedial, in a HOG1-MAPK pathway-dependent manner, suggesting that the temperature sensitivity of these mutants may arise partially from cell wall defects. Moreover, Mpk1 hyper-phosphorylation indicated activation of the cell wall integrity (CWI) signaling pathway in cohesin mutants. Genetic interaction analysis revealed that the CWI pathway is essential for survival of mcd1-1 upon additional cell wall stress. The cell wall defect was independent of the cohesion function and accompanied by misregulation of expression of several genes having cell wall-related functions. Our findings reveal a requirement of cohesin in maintenance of CWI that is independent of the CWI pathway, and that may arise from cohesin’s role in regulating the expression of multiple genes encoding proteins involved in cell wall organization and biosynthesis.  相似文献   

17.
18.
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics,manyachievementshavebeenmadein uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging,nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review,we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.  相似文献   

19.
Fungal pathogens face similar stress conditions to those affecting plants and saprotrophic fungi. Therefore, mechanisms underlying fungal response to the stress factors may be well-conserved across various taxa. Saccharomyces cerevisiae was the most researched for signal transduction pathways but many of the pathways' components were later reported for filamentous fungi as well. The most widely studied pathways are those involving the G proteins, adenylate cyclase (cAMP) and mitogen-activated protein kinases (MAPKs). Apart from these, the target-of-rapamycin (TOR), calcium/calcineurin and cell wall integrity (CWI) pathways are of significant interest when stress response is considered. All these pathways were included in this review. It seems that the TOR-received signals are transferred to the CWI pathway, secondary metabolism and virulence. Specific and non-specific cellular responses of Fusarium species, triggered by signals received from the environment, were discussed, with particular focus on stress response and pathogenicity towards the plant host.  相似文献   

20.
植物细胞壁蛋白质组学研究进展   总被引:1,自引:0,他引:1  
植物细胞壁蛋白质在细胞代谢和发育调控、细胞壁组分修饰、信号转导及胁迫响应等生物学事件中具有重要功能.最近,国内外学者开展了大量植物细胞壁蛋白质组学的研究工作,并取得了巨大进展.本文详述了细胞壁蛋白质的分类、提取、鉴定及生物信息学分析的最新进展,总结了植物细胞壁蛋白质组学的应用和面临的挑战,提出了植物细胞壁蛋白质组学研究的框架图,以期为植物细胞壁蛋白质组学的广泛研究提供借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号