首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(1):79-91
Chromatin regulation is a fundamental mechanism underlying stem cell pluripotency, differentiation, and the establishment of cell type-specific gene expression profiles. To examine the role of chromatin regulation in stem cells in vivo, we study regeneration in the freshwater planarian Schmidtea mediterranea. These animals possess a high concentration of pluripotent stem cells, which are capable of restoring any damaged or lost tissues after injury or amputation. Here, we identify the S. mediterranea homologs of the SET1/MLL family of histone methyltransferases and COMPASS and COMPASS-like complex proteins and investigate their role in stem cell function during regeneration. We identified six S. mediterranea homologs of the SET1/MLL family (set1, mll1/2, trr-1, trr-2, mll5–1 and mll5–2), characterized their patterns of expression in the animal, and examined their function by RNAi. All members of this family are expressed in the stem cell population and differentiated tissues. We show that set1, mll1/2, trr-1, and mll5–2 are required for regeneration and that set1, trr-1 and mll5–2 play roles in the regulation of mitosis. Most notably, knockdown of the planarian set1 homolog leads to stem cell depletion. A subset of planarian homologs of COMPASS and COMPASS-like complex proteins are also expressed in stem cells and implicated in regeneration, but the knockdown phenotypes suggest that some complex members also function in other aspects of planarian biology. This work characterizes the function of the SET1/MLL family in the context of planarian regeneration and provides insight into the role of these enzymes in adult stem cell regulation in vivo.  相似文献   

2.
Histone lysine methylation by histone lysine methyltransferases (HKMTs) has been implicated in regulation of gene expression. While significant progress has been made to understand the roles and mechanisms of animal HKMT functions, only a few plant HKMTs are functionally characterized. To unravel histone substrate specificity, degree of methylation and catalytic activity, we analyzed Arabidopsis Trithorax‐like protein (ATX), Su (var)3‐9 h omologs protein (SUVH), Su(var)3‐9 related protein (SUVR), ATXR5, ATXR6, and E(Z) HKMTs of Arabidopsis, maize and rice through sequence and structure comparison. We show that ATXs may exhibit methyltransferase specificity toward histone 3 lysine 4 (H3K4) and might catalyse the trimethylation. Our analyses also indicate that most SUVH proteins of Arabidopsis may bind histone H3 lysine 9 (H3K9). We also predict that SUVH7, SUVH8, SUVR1, SUVR3, ZmSET20 and ZmSET22 catalyse monomethylation or dimethylation of H3K9. Except for SDG728, which may trimethylate H3K9, all SUVH paralogs in rice may catalyse monomethylation or dimethylation. ZmSET11, ZmSET31, SDG713, SDG715, and SDG726 proteins are predicted to be catalytically inactive because of an incomplete S‐adenosylmethionine (SAM) binding pocket and a post‐SET domain. E(Z) homologs can trimethylate H3K27 substrate, which is similar to the Enhancer of Zeste homolog 2 of humans. Our comparative sequence analyses reveal that ATXR5 and ATXR6 lack motifs/domains required for protein‐protein interaction and polycomb repressive complex 2 complex formation. We propose that subtle variations of key residues at substrate or SAM binding pocket, around the catalytic pocket, or presence of pre‐SET and post‐SET domains in HKMTs of the aforementioned plant species lead to variations in class‐specific HKMT functions and further determine their substrate specificity, the degree of methylation and catalytic activity.  相似文献   

3.
4.
5.
6.
EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β‐lactam antibiotics as well as the ester bond of p‐nitrophenyl esters. EstU1 assumes a β‐lactamase‐like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β‐lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β‐lactam antibiotics. This result explains the weak β‐lactamase activity of EstU1 compared with class C β‐lactamases. Finally, structural and sequential comparison of EstU1 with other family VIII carboxylesterases elucidates an operative molecular strategy used by family VIII carboxylesterases to extend their substrate spectrum. Proteins 2013; 81:2045–2051. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
Staphylococcus hyicus lipase differs from other bacterial lipases in its high phospholipase A1 activity. Here, we present the crystal structure of the S. hyicus lipase at 2.86 A resolution. The lipase is in an open conformation, with the active site partly covered by a neighbouring molecule. Ser124, Asp314 and His355 form the catalytic triad. The substrate-binding cavity contains two large hydrophobic acyl chain-binding pockets and a shallow and more polar third pocket that is capable of binding either a (short) fatty acid or a phospholipid head-group. A model of a phospholipid bound in the active site shows that Lys295 is at hydrogen bonding distance from the substrate's phosphate group. Residues Ser356, Glu292 and Thr294 hold the lysine in position by hydrogen bonding and electrostatic interactions. These observations explain the biochemical data showing the importance of Lys295 and Ser356 for phospholipid binding and phospholipase A1 activity.  相似文献   

8.
Ubiquitin adducts surrounding DNA double-strand breaks (DSBs) have emerged as molecular platforms important for the assembly of DNA damage mediator and repair proteins. Central to these chromatin modifications lies the E2 UBC13, which has been implicated in a bipartite role in priming and amplifying lys63-linked ubiquitin chains on histone molecules through coupling with the E3 RNF8 and RNF168. However, unlike the RNF8-UBC13 holoenyzme, exactly how RNF168 work in concert with UBC13 remains obscure. To provide a structural perspective for the RNF168-UBC13 complex, we solved the crystal structure of the RNF168 RING domain. Interestingly, while the RNF168 RING adopts a typical RING finger fold with two zinc ions coordinated by several conserved cystine and histine residues arranged in a C3HC4 “cross-brace” manner, structural superimposition of RNF168 RING with other UBC13-binding E3 ubiquitin ligases revealed substantial differences at its corresponding UBC13-binding interface. Consistently, and in stark contrast to that between RNF8 and UBC13, RNF168 did not stably associate with UBC13 in vitro or in vivo. Moreover, domain-swapping experiments indicated that the RNF8 and RNF168 RING domains are not functionally interchangeable. We propose that RNF8 and RNF168 operate in different modes with their cognate E2 UBC13 at DSBs.  相似文献   

9.
Artocarpin, a tetrameric lectin of molecular mass 65 kDa, is one of the two lectins extracted from the seeds of jackfruit. The structures of the complexes of artocarpin with mannotriose and mannopentose reported here, together with the structures of artocarpin and its complex with Me-alpha-mannose reported earlier, show that the lectin possesses a deep-seated binding site formed by three loops. The binding site can be considered as composed of two subsites; the primary site and the secondary site. Interactions at the primary site composed of two of the loops involve mainly hydrogen bonds, while those at the secondary site comprising the third loop are primarily van der Waals in nature. Mannotriose in its complex with the lectin interacts through all the three mannopyranosyl residues; mannopentose interacts with the protein using at least three of the five mannose residues. The complexes provide a structural explanation for the carbohydrate specificities of artocarpin. A detailed comparison with the sugar complexes of heltuba, the only other mannose-specific jacalin-like lectin with known three-dimensional structure in sugar-bound form, establishes the role of the sugar-binding loop constituting the secondary site, in conferring different specificities at the oligosaccharide level. This loop is four residues longer in artocarpin than in heltuba, providing an instance where variation in loop length is used as a strategy for generating carbohydrate specificity.  相似文献   

10.
Branching enzymes (BEs) catalyze the formation of branch points in glycogen and amylopectin by cleavage of α-1,4 glycosidic bonds and subsequent transfer to a new α-1,6 position. BEs generally belong to glycoside hydrolase family 13 (GH13); however TK1436, isolated from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, is the first GH57 member, which possesses BE activity. To date, the only BE structure that had been determined is a GH13-type from Escherichia coli. Herein, we have determined the crystal structure of TK1436 in the native state and in complex with glucose and substrate mimetics that permitted mapping of the substrate-binding channel and identification of key residues for glucanotransferase activity. Its structure encompasses a distorted (β/α)(7)-barrel juxtaposed to a C-terminal α-helical domain, which also participates in the formation of the active-site cleft. The active site comprises two acidic catalytic residues (Glu183 and Asp354), the polarizer His10, aromatic gate-keepers (Trp28, Trp270, Trp407, and Trp416) and the residue Tyr233, which is fully conserved among GH13- and GH57-type BEs. Despite TK1436 displaying a completely different fold and domain organization when compared to E. coli BE, they share the same structural determinants for BE activity. Structural comparison with AmyC, a GH57 α-amylase devoid of BE activity, revealed that the catalytic loop involved in substrate recognition and binding, is shortened in AmyC structure and it has been addressed as a key feature for its inability for glucanotransferase activity. The oligomerization has also been pointed out as a possible determinant for functional differentiation among GH57 members.  相似文献   

11.
Arabidopsis LHP1 (LIKE HETEROCHROMATIN PROTEIN 1), a unique homolog of HP1 in Drosophila, plays important roles in plant development, growth, and architecture. In contrast to specific binding of the HP1 chromodomain to methylated H3K9 histone tails, the chromodomain of LHP1 has been shown to bind to both methylated H3K9 and H3K27 histone tails, and LHP1 carries out its function mainly via its interaction with these two epigenetic marks. However, the molecular mechanism for the recognition of methylated histone H3K9/27 by the LHP1 chromodomain is still unknown. In this study, we characterized the binding ability of LHP1 to histone H3K9 and H3K27 peptides and found that the chromodomain of LHP1 binds to histone H3K9me2/3 and H3K27me2/3 peptides with comparable affinities, although it exhibited no binding or weak binding to unmodified or monomethylated H3K9/K27 peptides. Our crystal structures of the LHP1 chromodomain in peptide-free and peptide-bound forms coupled with mutagenesis studies reveal that the chromodomain of LHP1 bears a slightly different chromodomain architecture and recognizes methylated H3K9 and H3K27 peptides via a hydrophobic clasp, similar to the chromodomains of human Polycomb proteins, which could not be explained only based on primary structure analysis. Our binding and structural studies of the LHP1 chromodomain illuminate a conserved ligand interaction mode between chromodomains of both animals and plants, and shed light on further functional study of the LHP1 protein.  相似文献   

12.
UDP‐glucose: anthocyanidin 3‐O‐glucosyltransferase (UGT78K6) from Clitoria ternatea catalyzes the transfer of glucose from UDP‐glucose to anthocyanidins such as delphinidin. After the acylation of the 3‐O‐glucosyl residue, the 3′‐ and 5′‐hydroxyl groups of the product are further glucosylated by a glucosyltransferase in the biosynthesis of ternatins, which are anthocyanin pigments. To understand the acceptor‐recognition scheme of UGT78K6, the crystal structure of UGT78K6 and its complex forms with anthocyanidin delphinidin and petunidin, and flavonol kaempferol were determined to resolutions of 1.85 Å, 2.55 Å, 2.70 Å, and 1.75 Å, respectively. The enzyme recognition of unstable anthocyanidin aglycones was initially observed in this structural determination. The anthocyanidin‐ and flavonol‐acceptor binding details are almost identical in each complex structure, although the glucosylation activities against each acceptor were significantly different. The 3‐hydroxyl groups of the acceptor substrates were located at hydrogen‐bonding distances to the Nε2 atom of the His17 catalytic residue, supporting a role for glucosyl transfer to the 3‐hydroxyl groups of anthocyanidins and flavonols. However, the molecular orientations of these three acceptors are different from those of the known flavonoid glycosyltransferases, VvGT1 and UGT78G1. The acceptor substrates in UGT78K6 are reversely bound to its binding site by a 180° rotation about the O1–O3 axis of the flavonoid backbones observed in VvGT1 and UGT78G1; consequently, the 5‐ and 7‐hydroxyl groups are protected from glucosylation. These substrate recognition schemes are useful to understand the unique reaction mechanism of UGT78K6 for the ternatin biosynthesis, and suggest the potential for controlled synthesis of natural pigments.  相似文献   

13.
An enigma in the field of peptide transport is the structural basis for ligand promiscuity, as exemplified by PepT1, the mammalian plasma membrane peptide transporter. Here, we present crystal structures of di‐ and tripeptide‐bound complexes of a bacterial homologue of PepT1, which reveal at least two mechanisms for peptide recognition that operate within a single, centrally located binding site. The dipeptide was orientated laterally in the binding site, whereas the tripeptide revealed an alternative vertical binding mode. The co‐crystal structures combined with functional studies reveal that biochemically distinct peptide‐binding sites likely operate within the POT/PTR family of proton‐coupled symporters and suggest that transport promiscuity has arisen in part through the ability of the binding site to accommodate peptides in multiple orientations for transport.  相似文献   

14.
The crystal structure of the Bacillus subtilis YkoF gene product, a protein involved in the hydroxymethyl pyrimidine (HMP) salvage pathway, was solved by the multiwavelength anomalous dispersion (MAD) method and refined with data extending to 1.65 A resolution. The atomic model of the protein shows a homodimeric association of two polypeptide chains, each containing an internal repeat of a ferredoxin-like betaalphabetabetaalphabeta fold, as seen in the ACT and RAM-domains. Each repeat shows a remarkable similarity to two members of the COG0011 domain family, the MTH1187 and YBL001c proteins, the crystal structures of which were recently solved by the Northeast Structural Genomics Consortium. Two YkoF monomers form a tightly associated dimer, in which the amino acid residues forming the interface are conserved among family members. A putative small-ligand binding site was located within each repeat in a position analogous to the serine-binding site of the ACT-domain of the Escherichia coli phosphoglycerate dehydrogenase. Genetic data suggested that this could be a thiamin or HMP-binding site. Calorimetric data confirmed that YkoF binds two thiamin molecules with varying affinities and a thiamine-YkoF complex was obtained by co-crystallization. The atomic model of the complex was refined using data to 2.3 A resolution and revealed a unique H-bonding pattern that constitutes the molecular basis of specificity for the HMP moiety of thiamin.  相似文献   

15.
16.
DNMT3 proteins are de novo DNA methyltransferases that are responsible for the establishment of DNA methylation patterns in mammalian genomes. Here, we have determined the crystal structures of the ATRX–DNMT3–DNMT3L (ADD) domain of DNMT3A in an unliganded form and in a complex with the amino‐terminal tail of histone H3. Combined with the results of biochemical analysis, the complex structure indicates that DNMT3A recognizes the unmethylated state of lysine 4 in histone H3. This finding indicates that the recruitment of DNMT3A onto chromatin, and thereby de novo DNA methylation, is mediated by recognition of the histone modification state by its ADD domain. Furthermore, our biochemical and nuclear magnetic resonance data show mutually exclusive binding of the ADD domain of DNMT3A and the chromodomain of heterochromatin protein 1α to the H3 tail. These results indicate that de novo DNA methylation by DNMT3A requires the alteration of chromatin structure.  相似文献   

17.
SH2-B, APS, and Lnk constitute a family of adapter proteins that modulate signaling by protein tyrosine kinases. These adapters contain an N-terminal dimerization region, a pleckstrin homology domain, and a C-terminal Src homology-2 (SH2) domain. SH2-B is recruited via its SH2 domain to various protein tyrosine kinases, including Janus kinase-2 (Jak2) and the insulin receptor. Here, we present the crystal structure at 2.35 A resolution of the SH2 domain of SH2-B in complex with a phosphopeptide representing the SH2-B recruitment site in Jak2 (pTyr813). The structure reveals a canonical SH2 domain-phosphopeptide binding mode, but with specific recognition of a glutamate at the +1 position relative to phosphotyrosine, in addition to recognition of a hydrophobic residue at the +3 position. Biochemical studies of SH2-B and APS demonstrate that, although the SH2 domains of these two adapter proteins share 79% sequence identity, the SH2-B SH2 domain binds preferentially to Jak2, whereas the APS SH2 domain has higher affinity for the insulin receptor. This differential specificity is attributable to the difference in the oligomeric states of the two SH2 domains: monomeric for SH2-B and dimeric for APS.  相似文献   

18.
Post‐translational modification by small ubiquitin‐like modifier (SUMO) provides an important regulatory mechanism in diverse cellular processes. Modification of SUMO has been shown to target proteins involved in systems ranging from DNA repair pathways to the ubiquitin‐proteasome degradation system by the action of SUMO‐targeted ubiquitin ligases (STUbLs). STUbLs recognize target proteins modified with a poly‐SUMO chain through their SUMO‐interacting motifs (SIMs). STUbLs are also associated with RENi family proteins, which commonly have two SUMO‐like domains (SLD1 and SLD2) at their C terminus. We have determined the crystal structures of SLD2 of mouse RENi protein, Nip45, in a free form and in complex with a mouse E2 sumoylation enzyme, Ubc9. While Nip45 SLD2 shares a β‐grasp fold with SUMO, the SIM interaction surface conserved in SUMO paralogues does not exist in SLD2. Biochemical data indicates that neither tandem SLDs or SLD2 of Nip45 bind to either tandem SIMs from either mouse STUbL, RNF4 or to those from SUMO‐binding proteins, whose interactions with SUMO have been well characterized. On the other hand, Nip45 SLD2 binds to Ubc9 in an almost identical manner to that of SUMO and thereby inhibits elongation of poly‐SUMO chains. This finding highlights a possible role of the RENi proteins in the modulation of Ubc9‐mediated poly‐SUMO formation. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
l Methionine decarboxylase (MetDC) from Streptomyces sp. 590 is a vitamin B6‐dependent enzyme and catalyzes the non‐oxidative decarboxylation of l methionine to produce 3‐methylthiopropylamine and carbon dioxide. We present here the crystal structures of the ligand‐free form of MetDC and of several enzymatic reaction intermediates. Group II amino acid decarboxylases have many residues in common around the active site but the residues surrounding the side chain of the substrate differ. Based on information obtained from the crystal structure, and mutational and biochemical experiments, we propose a key role for Gln64 in determining the substrate specificity of MetDC, and for Tyr421 as the acid catalyst that participates in protonation after the decarboxylation reaction.  相似文献   

20.
The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 ester bond of membrane phospholipids. The highly conserved Tyr residues 52 and 73 in the enzyme form hydrogen bonds to the carboxylate group of the catalytic Asp-99. These hydrogen bonds were initially regarded as essential for the interfacial recognition and the stability of the overall catalytic network. The elimination of the hydrogen bonds involving the phenolic hydroxyl groups of the Tyr-52 and -73 by changing them to Phe lowered the stability but did not significantly affect the catalytic activity of the enzyme. The X-ray crystal structure of the double mutant Y52F/Y73F has been determined at 1.93 A resolution to study the effect of the mutation on the structure. The crystals are trigonal, space group P3(1)21, with cell parameters a = b = 46.3 A and c = 102.95 A. Intensity data were collected on a Siemens area detector, 8,024 reflections were unique with an R(sym) of 4.5% out of a total of 27,203. The structure was refined using all the unique reflections by XPLOR to a final R-factor of 18.6% for 955 protein atoms, 91 water molecules, and 1 calcium ion. The root mean square deviation for the alpha-carbon atoms between the double mutant and wild type was 0.56 A. The crystal structure revealed that four hydrogen bonds were lost in the catalytic network; three involving the tyrosines and one involving Pro-68. However, the hydrogen bonds of the catalytic triad, His-48, Asp-99, and the catalytic water, are retained. There is no additional solvent molecule at the active site to replace the missing hydroxyl groups; instead, the replacement of the phenolic OH groups by H atoms draws the Phe residues closer to the neighboring residues compared to wild type; Phe-52 moves toward His-48 and Asp-99 of the catalytic diad, and Phe-73 moves toward Met-8, both by about 0.5 A. The closing of the voids left by the OH groups increases the hydrophobic interactions compensating for the lost hydrogen bonds. The conservation of the triad hydrogen bonds and the stabilization of the active site by the increased hydrophobic interactions could explain why the double mutant has activity similar to wild type. The results indicate that the aspartyl carboxylate group of the catalytic triad can function alone without additional support from the hydrogen bonds of the two Tyr residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号