首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Condensins are multisubunit complexes that play central roles in chromosome organization and segregation in eukaryotes. Many eukaryotic species have two different condensin complexes (condensins I and II), although some species, such as fungi, have condensin I only. Here we use the red alga Cyanidioschyzon merolae as a model organism because it represents the smallest and simplest organism that is predicted to possess both condensins I and II. We demonstrate that, despite the great evolutionary distance, spatiotemporal dynamics of condensins in C. merolae is strikingly similar to that observed in mammalian cells: condensin II is nuclear throughout the cell cycle, whereas condensin I appears on chromosomes only after the nuclear envelope partially dissolves at prometaphase. Unlike in mammalian cells, however, condensin II is confined to centromeres in metaphase, whereas condensin I distributes more broadly along arms. We firmly establish a targeted gene disruption technique in this organism and find, to our surprise, that condensin II is not essential for mitosis under laboratory growth conditions, although it plays a crucial role in facilitating sister centromere resolution in the presence of a microtubule drug. The results provide fundamental insights into the evolution of condensin-based chromosome architecture and dynamics.  相似文献   

3.
Condensins: organizing and segregating the genome   总被引:16,自引:0,他引:16  
Hirano T 《Current biology : CB》2005,15(7):R265-R275
Condensins are multi-subunit protein complexes that play a central role in mitotic chromosome assembly and segregation. The complexes contain 'structural maintenance of chromosomes' (SMC) ATPase subunits, and induce DNA supercoiling and looping in an ATP-hydrolysis-dependent manner in vitro. Vertebrate cells have two different condensin complexes, condensins I and II, each containing a unique set of regulatory subunits. Condensin II participates in an early stage of chromosome condensation within the prophase nucleus. Condensin I gains access to chromosomes only after the nuclear envelope breaks down, and collaborates with condensin II to assemble metaphase chromosomes with fully resolved sister chromatids. The complexes also play critical roles in meiotic chromosome segregation and in interphase processes such as gene repression and checkpoint responses. In bacterial cells, ancestral forms of condensins control chromosome dynamics. Dissecting the diverse functions of condensins is likely to be central to our understanding of genome organization, stability and evolution.  相似文献   

4.
5.
Condensins are essential protein complexes critical for mitotic chromosome organization. Little is known about the function of condensins during interphase, particularly in mammalian cells. Here we report the interphase-specific interaction between condensin I and the DNA nick-sensor poly(ADP-ribose) polymerase 1 (PARP-1). We show that the association between condensin I, PARP-1, and the base excision repair (BER) factor XRCC1 increases dramatically upon single-strand break damage (SSB) induction. Damage-specific association of condensin I with the BER factors flap endonuclease 1 (FEN-1) and DNA polymerase delta/epsilon was also observed, suggesting that condensin I is recruited to interact with BER factors at damage sites. Consistent with this, DNA damage rapidly stimulates the chromatin association of PARP-1, condensin I, and XRCC1. Furthermore, depletion of condensin in vivo compromises SSB but not double-strand break (DSB) repair. Our results identify a SSB-specific response of condensin I through PARP-1 and demonstrate a role for condensin in SSB repair.  相似文献   

6.
Dynamic regulation of chromosome structure and organization is critical for fundamental cellular processes such as gene expression and chromosome segregation. Condensins are conserved chromosome-associated proteins that regulate a variety of chromosome dynamics, including axial shortening, lateral compaction, and homolog pairing. However, how the in vivo activities of condensins are regulated and how functional interactors target condensins to chromatin are not well understood. To better understand how Drosophila melanogaster condensin is regulated, we performed a yeast two-hybrid screen and identified the chromo-barrel domain protein Mrg15 to interact with the Cap-H2 condensin subunit. Genetic interactions demonstrate that Mrg15 function is required for Cap-H2-mediated unpairing of polytene chromosomes in ovarian nurse cells and salivary gland cells. In diploid tissues, transvection assays demonstrate that Mrg15 inhibits transvection at Ubx and cooperates with Cap-H2 to antagonize transvection at yellow. In cultured cells, we show that levels of chromatin-bound Cap-H2 protein are partially dependent on Mrg15 and that Cap-H2-mediated homolog unpairing is suppressed by RNA interference depletion of Mrg15. Thus, maintenance of interphase chromosome compaction and homolog pairing status requires both Mrg15 and Cap-H2. We propose a model where the Mrg15 and Cap-H2 protein–protein interaction may serve to recruit Cap-H2 to chromatin and facilitates compaction of interphase chromatin.  相似文献   

7.

Background

Lamin A (LMNA) is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350) and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670). Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1) activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood.

Results

We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (LmnaDhe). We found that dermal fibroblasts from heterozygous LmnaDhe (LmnaDhe/+) mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, LmnaDhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3), a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1) also was perturbed in LmnaDhe /+ cells. LmnaDhe /+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects.

Conclusions

These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control.  相似文献   

8.
Condensin complexes play vital roles in chromosome condensation during mitosis and meiosis. Condensin II uniquely localizes to chromatin throughout the cell cycle and, in addition to its mitotic duties, modulates chromosome organization and gene expression during interphase. Mitotic condensin activity is regulated by phosphorylation, but mechanisms that regulate condensin II during interphase are unclear. Here, we report that condensin II is inactivated when its subunit Cap-H2 is targeted for degradation by the SCFSlimb ubiquitin ligase complex and that disruption of this process dramatically changed interphase chromatin organization. Inhibition of SCFSlimb function reorganized interphase chromosomes into dense, compact domains and disrupted homologue pairing in both cultured Drosophila cells and in vivo, but these effects were rescued by condensin II inactivation. Furthermore, Cap-H2 stabilization distorted nuclear envelopes and dispersed Cid/CENP-A on interphase chromosomes. Therefore, SCFSlimb-mediated down-regulation of condensin II is required to maintain proper organization and morphology of the interphase nucleus.  相似文献   

9.
During development of the cerebral cortex, neural stem cells (NSCs) divide symmetrically to proliferate and asymmetrically to generate neurons. Although faithful segregation of mitotic chromosomes is critical for NSC divisions, its fundamental mechanism remains unclear. A class of evolutionarily conserved protein complexes, known as condensins, is thought to be central to chromosome assembly and segregation among eukaryotes. Here we report the first comprehensive genetic study of mammalian condensins, demonstrating that two different types of condensin complexes (condensins I and II) are both essential for NSC divisions and survival in mice. Simultaneous depletion of both condensins leads to severe defects in chromosome assembly and segregation, which in turn cause DNA damage and trigger p53-induced apoptosis. Individual depletions of condensins I and II lead to slower loss of NSCs compared to simultaneous depletion, but they display distinct mitotic defects: chromosome missegregation was observed more prominently in NSCs depleted of condensin II, whereas mitotic delays were detectable only in condensin I-depleted NSCs. Remarkably, NSCs depleted of condensin II display hyperclustering of pericentric heterochromatin and nucleoli, indicating that condensin II, but not condensin I, plays a critical role in establishing interphase nuclear architecture. Intriguingly, these defects are taken over to postmitotic neurons. Our results demonstrate that condensins I and II have overlapping and non-overlapping functions in NSCs, and also provide evolutionary insight into intricate balancing acts of the two condensin complexes.  相似文献   

10.
Condensins I and II in vertebrates are essential ATP-dependent complexes necessary for chromosome condensation in mitosis. Condensins depletion is known to perturb structure and function of centromeres, however the mechanism of this functional link remains elusive. Depletion of condensin activity is now shown to result in a significant loss of loading of CENP-A, the histone H3 variant found at active centromeres and the proposed epigenetic mark of centromere identity. Absence of condensins and/or CENP-A insufficiency produced a specific kinetochore defect, such that a functional mitotic checkpoint cannot prevent chromosome missegregation resulting from improper attachment of sister kinetochores to spindle microtubules. Spindle microtubule-dependent deformation of both inner kinetochores and the HEC1/Ndc80 microtubule-capturing module, then results in kinetochore separation from the Aurora B pool and ensuing reduced kinase activity at centromeres. Moreover, recovery from mitosis-inhibition by monastrol revealed a high incidence of merotelic attachment that was nearly identical with condensin depletion, Aurora B inactivation, or both, indicating that the Aurora B dysfunction is the key defect leading to chromosome missegregation in condensin-depleted cells. Thus, beyond a requirement for global chromosome condensation, condensins play a pivotal role in centromere assembly, proper spatial positioning of microtubule-capturing modules and positioning complexes of the inner centromere versus kinetochore plates.  相似文献   

11.
《Epigenetics》2013,8(4):212-215
Dosage compensation is an essential process that equalizes X-linked gene dosage

between the sexes. In the worm Caenorhabditis elegans, a complex of proteins called the dosage

compensation complex (DCC) binds both X chromosomes in hermaphrodites to downregulate

gene expression two-fold and hence to reduce X-linked gene expression levels equal to that in

males. Five subunits of the DCC form the condensin IDC complex, a homolog of the

evolutionarily conserved condensin complex required for chromosome segregation and

compaction during mitosis and meiosis. How related complexes can perform such diverse

functions remains a mystery. Nevertheless, it is believed that the mitotic and interphase functions

of condensin are mechanistically related, and understanding one process will reveal new insights

into the other. We discuss how during worm dosage compensation a condensin-mediated

function may guide the organization of the interphase chromatin fibers, leading to the formation

of a repressive nuclear compartment.  相似文献   

12.
Two different condensin complexes make distinct contributions to metaphase chromosome architecture in vertebrate cells. We show here that the spatial and temporal distributions of condensins I and II are differentially regulated during the cell cycle in HeLa cells. Condensin II is predominantly nuclear during interphase and contributes to early stages of chromosome assembly in prophase. In contrast, condensin I is sequestered in the cytoplasm from interphase through prophase and gains access to chromosomes only after the nuclear envelope breaks down in prometaphase. The two complexes alternate along the axis of metaphase chromatids, but they are arranged into a unique geometry at the centromere/kinetochore region, with condensin II enriched near the inner kinetochore plate. This region-specific distribution of condensins I and II is severely disrupted upon depletion of Aurora B, although their association with the chromosome arm is not. Depletion of condensin subunits causes defects in kinetochore structure and function, leading to aberrant chromosome alignment and segregation. Our results suggest that the two condensin complexes act sequentially to initiate the assembly of mitotic chromosomes and that their specialized distribution at the centromere/kinetochore region may play a crucial role in placing sister kinetochores into the back-to-back orientation.  相似文献   

13.
14.

Background

Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions.

Results

By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals.

Conclusions

We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains.  相似文献   

15.
Condensins play a central role in global chromatin organization. In bacteria, two families of condensins have been identified, the MukBEF and SMC-ScpAB complexes. Only one of the two complexes is usually found in a given species, giving rise to a paradigm that a single condensin organizes bacterial chromosomes. Using sequence analysis, we identified a third family of condensins, MksBEF (MukBEF-like SMC proteins), which is broadly present in diverse bacteria. The proteins appear distantly related to MukBEF, have a similar operon organization and similar predicted secondary structures albeit with notably shorter coiled-coils. All three subunits of MksBEF exhibit significant sequence variation and can be divided into a series of overlapping subfamilies. MksBEF often coexists with the SMC-ScpAB, MukBEF and, sometimes, other MksBEFs. In Pseudomonas aeruginosa, both SMC and MksB contribute to faithful chromosome partitioning, with their inactivation leading to increased frequencies of anucleate cells. Moreover, MksBEF can complement anucleate cell formation in SMC-deficient cells. Purified PaMksB showed activities typical for condensins including ATP-modulated DNA binding and condensation. Notably, DNA binding by MksB is negatively regulated by ATP, which sets it apart from other known SMC proteins. Thus, several specialized condensins might be involved in organization of bacterial chromosomes.  相似文献   

16.

Background

The master transactivator CIITA is essential to the regulation of Major Histocompatibility Complex (MHC) class II genes and an effective immune response. CIITA is known to modulate a small number of non-MHC genes involved in antigen presentation such as CD74 and B2M but its broader genome-wide function and relationship with underlying genetic diversity has not been resolved.

Results

We report the first genome-wide ChIP-seq map for CIITA and complement this by mapping inter-individual variation in CIITA expression as a quantitative trait. We analyse CIITA recruitment for pathophysiologically relevant primary human B cells and monocytes, resting and treated with interferon-gamma, in the context of the epigenomic regulatory landscape and DNA-binding proteins associated with the CIITA enhanceosome including RFX, CREB1/ATF1 and NFY. We confirm recruitment to proximal promoter sequences in MHC class II genes and more distally involving the canonical CIITA enhanceosome. Overall, we map 843 CIITA binding intervals involving 442 genes and find 95% of intervals are located outside the MHC and 60% not associated with RFX5 binding. Binding intervals are enriched for genes involved in immune function and infectious disease with novel loci including major histone gene clusters. We resolve differentially expressed genes associated in trans with a CIITA intronic sequence variant, integrate with CIITA recruitment and show how this is mediated by allele-specific recruitment of NF-kB.

Conclusions

Our results indicate a broader role for CIITA beyond the MHC involving immune-related genes. We provide new insights into allele-specific regulation of CIITA informative for understanding gene function and disease.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0494-z) contains supplementary material, which is available to authorized users.  相似文献   

17.

Background

Apamin sensitive potassium current (I KAS), carried by the type 2 small conductance Ca2+-activated potassium (SK2) channels, plays an important role in post-shock action potential duration (APD) shortening and recurrent spontaneous ventricular fibrillation (VF) in failing ventricles.

Objective

To test the hypothesis that amiodarone inhibits I KAS in human embryonic kidney 293 (HEK-293) cells.

Methods

We used the patch-clamp technique to study I KAS in HEK-293 cells transiently expressing human SK2 before and after amiodarone administration.

Results

Amiodarone inhibited IKAS in a dose-dependent manner (IC50, 2.67±0.25 µM with 1 µM intrapipette Ca2+). Maximal inhibition was observed with 50 µM amiodarone which inhibited 85.6±3.1% of IKAS induced with 1 µM intrapipette Ca2+ (n = 3). IKAS inhibition by amiodarone was not voltage-dependent, but was Ca2+-dependent: 30 µM amiodarone inhibited 81.5±1.9% of I KAS induced with 1 µM Ca2+ (n = 4), and 16.4±4.9% with 250 nM Ca2+ (n = 5). Desethylamiodarone, a major metabolite of amiodarone, also exerts voltage-independent but Ca2+ dependent inhibition of I KAS.

Conclusion

Both amiodarone and desethylamiodarone inhibit I KAS at therapeutic concentrations. The inhibition is independent of time and voltage, but is dependent on the intracellular Ca2+ concentration. SK2 current inhibition may in part underlie amiodarone''s effects in preventing electrical storm in failing ventricles.  相似文献   

18.

Background

Centromere identity is determined epigenetically by deposition of CenH3, a centromere-specific histone H3 variant that dictates kinetochore assembly. The molecular basis of the contribution of CenH3 to centromere/kinetochore functions is, however, incompletely understood, as its interactions with the rest of centromere/kinetochore components remain largely uncharacterised at the molecular/structural level.

Principal Findings

Here, we report on the contribution of Drosophila CenH3CID to recruitment of BubR1, a conserved kinetochore protein that is a core component of the spindle attachment checkpoint (SAC). This interaction is mediated by the N-terminal domain of CenH3CID (NCenH3CID), as tethering NCenH3CID to an ectopic reporter construct results in BubR1 recruitment and BubR1-dependent silencing of the reporter gene. Here, we also show that this interaction depends on a short arginine (R)-rich motif and that, most remarkably, it appears to be evolutionarily conserved, as tethering constructs carrying the highly divergent NCenH3 of budding yeast and human also induce silencing of the reporter. Interestingly, though NCenH3 shows an exceedingly low degree of conservation, the presence of R-rich motives is a common feature of NCenH3 from distant species. Finally, our results also indicate that two other conserved sequence motives within NCenH3CID might also be involved in interactions with kinetochore components.

Conclusions

These results unveil an unexpected contribution of the hypervariable N-domain of CenH3 to recruitment of kinetochore components, identifying simple R-rich motives within it as evolutionary conserved structural determinants involved in BubR1 recruitment.  相似文献   

19.

Background

Meiotic recombination ensures proper segregation of homologous chromosomes and creates genetic variation. In many organisms, recombination occurs at limited sites, termed ''hotspots'', whose positions in mammals are determined by PR domain member 9 (PRDM9), a long-array zinc-finger and chromatin-modifier protein. Determining the rules governing the DNA binding of PRDM9 is a major issue in understanding how it functions.

Results

Mouse PRDM9 protein variants bind to hotspot DNA sequences in a manner that is specific for both PRDM9 and DNA haplotypes, and that in vitro binding parallels its in vivo biological activity. Examining four hotspots, three activated by Prdm9Cst and one activated by Prdm9Dom2, we found that all binding sites required the full array of 11 or 12 contiguous fingers, depending on the allele, and that there was little sequence similarity between the binding sites of the three Prdm9Cst activated hotspots. The binding specificity of each position in the Hlx1 binding site, activated by Prdm9Cst, was tested by mutating each nucleotide to its three alternatives. The 31 positions along the binding site varied considerably in the ability of alternative bases to support binding, which also implicates a role for additional binding to the DNA phosphate backbone.

Conclusions

These results, which provide the first detailed mapping of PRDM9 binding to DNA and, to our knowledge, the most detailed analysis yet of DNA binding by a long zinc-finger array, make clear that the binding specificities of PRDM9, and possibly other long-array zinc-finger proteins, are unusually complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号