首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A newly designed counter electrode (CE) composed of a hybridized structure of Au networks and cobalt sulfide (CoS) nanowire (NW) arrays is presented for flexible dye‐sensitized solar cells (DSSCs) and quantum dot‐sensitized solar cells (QDSSCs). The sheet resistance of the Au networks electrode is ≈10 Ω sq?1 with a transmittance up to 90%. The CoS NWs/Au hybridized networks show excellent electrocatalytic activity and lower charge transfer resistance toward the reduction of both Sx2? ions and I3? ions. The hybridized electrode exhibits remarkable mechanical strength and no obvious changes in morphology and sheet resistance even after 500 bending cycles; 3.13% and 4.73% efficiency are obtained by utilizing CoS/Au hybridized networks as CEs in TiO2 nanotube array (TNAR) based DSSCs and QDSSCs. This work provides a novel approach to fabricate flexible, transparent, conductive, and catalytically active electrodes for QDSSCs and DSSCs and pomotes the development of transparent percolation conductive films for photovoltaics.  相似文献   

2.
Described here is the production and characterization of a scalable method to produce 3D structured lithium ion battery anodes using free‐standing papers of porous silicon nanowires (Si‐NW) and graphene nanoribbons (GNRs). Using simple filtration methods, GNRs and Si‐NWs can be entangled into a mat thereby forming Si‐NW GNR papers. This produces anodes with high gravimetric capacity (up to 2500 mA h g?1) and high areal and volumetric capacities (up to 11 mA h cm?2 and 3960 mA h cm?3). The compact structure of the anode is possible since the GNR volume occupies a high proportion of empty space within the composite paper. These Si‐NW/GNR papers have been cycled for over 300 cycles, exhibiting a stable life cycle. Combined with LiCoO2 nanowires, a full battery is produced with high energy density (386 Wh kg?1), meeting requirements for high performance devices.  相似文献   

3.
The mechanism of welding of Au–Au, Ag–Ag and Au–Ag nanowires (NWs) with head-to-head contact is studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The effect of temperature in the range of 300–900 K is investigated. Simulation results show that at the initial welding, an incomplete jointing area forms through the interactions of the van der Waals attractive force, and that the jointing area increases with increasing the extent of contact between the two NWs during the welding process and temperature. Few defects form along the (1 1 1) close-packed plane during the welding process because the acting stress is quite low. Among the three NW pairs, the Au–Au NWs have the best cold-welding quality, whereas the Au–Ag NWs have the worst cold-welding quality due to the welding of different materials. With an increase in temperature, the weld stress and the mechanical strength of the NWs significantly decrease, and the number of disordered structures increases. The welding fails when the temperature exceeds the molten temperature of the NWs.  相似文献   

4.
A Au nanoparticle‐coated Ni nanowire substrate without binder or carbon is used as the electrode (denoted as the Au/Ni electrode) for Li‐oxygen (Li‐O2) batteries. A minimal amount of Au nanoparticles with sizes of <30 nm on a Ni nanowire substrate are coated using a simple electrodeposition method to the extent that maximum capacity can be utilized. This optimized, one body, Au/Ni electrode shows high capacities of 921 mAh g?1Au, 591 mAh g?1Au, and 359 mAh g?1Au, which are obtained at currents of 300 mAg?1Au, 500 mAg?1Au, and 1000 mAg?1Au respectively. More importantly, the Au/Ni electrode exhibits excellent cycle stability over 200 cycles.  相似文献   

5.
The objective of the present work is to establish that electron transfer occurs at a biosurface in contact with an ionic solution. For this purpose, electrical contact between evaporated films of metals and metal oxides and the membrane (dipalmitoylphosphatidylcholine alone or containing gramicidin) was made by use of a Langmuir-Blodgett trough technique. Three or five layers of lipid were thus formed on the metal substrate (gold, platinum, or tin dioxide); electronic connection was made to the latter but contact to the solution was via the membrane. A solution containing redox ions (p-benzoquinone-hydroquinone system) was used to make an interface with the membrane.Experiments were particularly designed to guard against the possibility that electrons would reach the quinone via unintended contact of the solution with the underlying metal via pinholes in the membrane, and in diffusion through the membrane. Thus, experiments were made with the biolipid alone, and then with the biolipid-gramicide mixture.Behavior of these two systems differed radically in that the biolipid alone showed time dependence in its behavior and after a few minutes behaved as though it presented only a permeable barrier between the ionic solution and the underlying metal (so that electron transfer occurred to the ions in solution from the metal or metal oxide). However, the biolipid-gramicidin behaved radically differently in that electrical currents measured in its presence did not change with time. Underpotential deposition on the biolipid-gramicidin differed from that on the biolipid alone; the latter showed anodic stripping peaks equal to those of the metal substrate, but on the former, the peaks were decisively shifted.Tafel lines for Q+2H++2eQH2 in the presence of the biolipid membrane at least a few minutes old were essentially the same as on the Au, Pt, and SnO2, respectively, underlying the membrane (hence it is permeable to ions from solution). However, measured Tafel lines for the same reaction and electrode system, except for the fact that gramicidin was mixed with the biolipid, were independent of the age of the membrane and differed from those obtained on the metallic underlay. Hence, electron transfer to the quinone occurs at the gramicidin-solution interface.  相似文献   

6.
Solution‐processable organic semiconductor nanowires (NWs) offer a potentially powerful strategy for producing large‐area printed flexible devices. Here, the fabrication of lateral organic solar cells (LOSC) using solution‐processed organic NW blends on a flexible substrate to produce a power source for use in flexible integrated microelectronics is reported. A high photocarrier generation and an efficient charge sweep out are achieved by incorporating 1D self‐assembled poly(3‐hexylthiophene) NWs into the active layer, and an MoO3 interfacial layer with high work function is introduced to increase the built‐in potential. These structures significantly increase the carrier diffusion/drift length and overall generated photocurrent in the channel. The utility of the LOSCs for high power source applications is demonstrated by using interdigitated electrode patterns that consist of multiple devices connected in parallel or in series. High photovoltage‐producing LOSC modules on plastic substrates for use in flexible optoelectronic devices are successfully fabricated. The LOSCs described here offer a new device architecture for use in highly flexible photoresponsive energy devices.  相似文献   

7.
The direct attachment and growth of gold or silver nanoparticles (NPs) on indium tin oxide (ITO) surfaces was demonstrated using a simple and inexpensive successive ionic layer adsorption and reaction (SILAR) method by chemical reduction of the precursor metal salts with dopamine aqueous solution. Ag NPs on ITO substrate were approximately spherical with an average particle size of about 57 nm, but had a wide particle size distribution. Compared with Ag NPs, under the same 10 SILAR cycles, Au NPs have higher density packing and smaller average particle size of about 36 nm. XRD characterization and surface chemistry analysis confirmed the formation of Ag and Au NPs on ITO substrate with small amounts of dopamine-quinone adsorbed on the surface of them. Although Au NPs showed characteristic plasmon absorption, this did not result in performance enhancement in solar cell with the structure of ITO/ZnO/PCPDTBT:[6,6]-phenyl C71/MoO3/Ag because of the energy level mismatch between ZnO and dopamine molecules adsorbed on the surface of metal NPs.  相似文献   

8.
Aqueous rechargeable zinc ion batteries are considered a promising candidate for large‐scale energy storage owing to their low cost and high safety nature. A composite material comprised of H2V3O8 nanowires (NWs) wrapped by graphene sheets and used as the cathode material for aqueous rechargeable zinc ion batteries is developed. Owing to the synergistic merits of desirable structural features of H2V3O8 NWs and high conductivity of the graphene network, the H2V3O8 NW/graphene composite exhibits superior zinc ion storage performance including high capacity of 394 mA h g?1 at 1/3 C, high rate capability of 270 mA h g?1 at 20 C and excellent cycling stability of up to 2000 cycles with a capacity retention of 87%. The battery offers a high energy density of 168 W h kg?1 at 1/3 C and a high power density of 2215 W kg?1 at 20 C (calculated based on the total weight of H2V3O8 NW/graphene composite and the theoretically required amount of Zn). Systematic structural and elemental characterization confirm the reversible Zn2+ and water cointercalation electrochemical reaction mechanism. This work brings a new prospect of designing high‐performance aqueous rechargeable zinc ion batteries for grid‐scale energy storage.  相似文献   

9.
Nanostructured Si is a promising anode material for the next generation of Li‐ion batteries, but few studies have focused on the electrical properties of the Li‐Si alloy phase, which are important for determining power capabilities and ensuring sufficient electrical conduction in the electrode structure. Here, we demonstrate an electrochemical device framework suitable for testing the electrical properties of single Si nanowires (NWs) at different lithiation states and correlating these properties with structural changes via transmission electron microscopy (TEM). We find that single Si NWs usually exhibit Ohmic I–V response in the lithiated state, with conductivities two to three orders of magnitude higher than in the delithiated state. After a number of sequential lithiation/delithiation cycles, the single NWs show similar conductivity after each lithiation step but show large variations in conductivity in the delithiated state. Finally, devices with groups of NWs in physical contact were fabricated, and structural changes in the NWs were observed after lithiation to investigate how the electrical resistance of NW junctions and the NWs themselves affect the lithiation behavior. The results suggest that electrical resistance of NW junctions can limit lithiation. Overall, this study shows the importance of investigating the electronic properties of individual components of a battery electrode (single nanostructures in this case) along with studying the nature of interactions within a collection of these component structures.  相似文献   

10.
N‐type metal oxides such as hematite (α‐Fe2O3) and bismuth vanadate (BiVO4) are promising candidate materials for efficient photoelectrochemical water splitting; however, their short minority carrier diffusion length and restricted carrier lifetime result in undesired rapid charge recombination. Herein, a 2D arranged globular Au nanosphere (NS) monolayer array with a highly ordered hexagonal hole pattern (hereafter, Au array) is introduced onto the surface of photoanodes comprised of metal oxide films via a facile drying and transfer‐printing process. Through plasmon‐induced resonance energy transfer, the Au array provides a strong electromagnetic field in the near‐surface area of the metal oxide film. The near‐field coupling interaction and amplification of the electromagnetic field suppress the charge recombination with long‐lived photogenerated holes and simultaneously enhance the light harvesting and charge transfer efficiencies. Consequently, an over 3.3‐fold higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) is achieved for the Au array/α‐Fe2O3. Furthermore, the high versatility of this transfer printing of Au arrays is demonstrated by introducing it on the molybdenum‐doped BiVO4 film, resulting in 1.5‐fold higher photocurrent density at 1.23 V versus RHE. The tailored metal film design can provide a potential strategy for the versatile application in various light‐mediated energy conversion and optoelectronic devices.  相似文献   

11.
Metal oxide/Si heterostructures make up an exciting design route to high‐performance electrodes for photoelectrochemical (PEC) water splitting. By monochromatic light sources, contributions of the individual layers in WO3/n‐Si heterostructures are untangled. It shows that band bending near the WO3/n‐Si interface is instrumental in charge separation and transport, and in generating a photovoltage that drives the PEC process. A thin metal layer inserted at the WO3/n‐Si interface helps in establishing the relation among the band bending depth, the photovoltage, and the PEC activity. This discovery breaks with the dominant Z‐scheme design idea, which focuses on increasing the conductivity of an interface layer to facilitate charge transport, but ignores the potential profile around the interface. Based on the analysis, a high‐work‐function metal is predicted to provide the best interface layer in WO3/n‐Si heterojunctions. Indeed, the fabricated WO3/Pt/n‐Si photoelectrodes exhibit a 2 times higher photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) and a 10 times enhancement at 1.6 V versus RHE compared to WO3/n‐Si. Here, it is essential that the native SiO2 layer at the interface between Si and the metal is kept in order to prevent Fermi level pinning in the Schottky contact between the Si and the metal.  相似文献   

12.
We studied the far-field optical reflection contrast spectroscopy (FORCS) properties of the following system: individual Au nanospheres (radius R) immobilized above Si substrate with different thicknesses (d) SiO2 between them. We found that peaks in the FORCS red-shift exponentially with d decreasing. The near-field coupling between the Au nanosphere and its supporting substrate is revealed to contribute to this, while the coupling strength is demonstrated to decrease exponentially with a decay length of 0.30 in units of d/R. It qualitatively agrees well in magnitude with the near-field coupling between two noble metal nanoparticles consisting of a dimer. Our results demonstrate that the FORCS can provide insight into the near-field coupling, which is significant for their applications in nano-photonics, sensing, surface-enhanced spectrascopies, etc.  相似文献   

13.
It is shown that the performance of inverted organic solar cells can be significantly improved by facilitating the formation of a quasi‐ohmic contact via solution‐processed alkali hydroxide (AOH) interlayers on top of n‐type metal oxide (aluminum zinc oxide, AZO, and zinc oxide, ZnO) layers. AOHs significantly reduce the work function of metal oxides, and are further proven to effectively passivate defect states in these metal oxides. The interfacial energetics of these electron collecting contacts with a prototypical electron acceptor (C60) are investigated to reveal the presence of a large interface dipole and a new interface state between the Fermi energy and the C60 highest occupied molecular orbital for AOH‐modified AZO contacts. These novel interfacial gap states are a result of ground‐state electron transfer from the metal hydroxide‐functionalized AZO contact to the adsorbed molecules, which are hypothesized to be electronically hybridized with the contact. These interface states tail all the way to the Fermi energy, providing for a highly n‐doped (metal‐like) interfacial molecular layer. Furthermore, the strong “light‐soaking” effect is no longer observed in devices with a AOH interface.  相似文献   

14.
Quantum‐dot (QD) photovoltaics (PVs) offer promise as energy‐conversion devices; however, their open‐circuit‐voltage (VOC) deficit is excessively large. Previous work has identified factors related to the QD active layer that contribute to VOC loss, including sub‐bandgap trap states and polydispersity in QD films. This work focuses instead on layer interfaces, and reveals a critical source of VOC loss: electron leakage at the QD/hole‐transport layer (HTL) interface. Although large‐bandgap organic materials in HTL are potentially suited to minimizing leakage current, dipoles that form at an organic/metal interface impede control over optimal band alignments. To overcome the challenge, a bilayer HTL configuration, which consists of semiconducting alpha‐sexithiophene (α‐6T) and metallic poly(3,4‐ethylenedioxythiphene) polystyrene sulfonate (PEDOT:PSS), is introduced. The introduction of the PEDOT:PSS layer between α‐6T and Au electrode suppresses the formation of undesired interfacial dipoles and a Schottky barrier for holes, and the bilayer HTL provides a high electron barrier of 1.35 eV. Using bilayer HTLs enhances the VOC by 74 mV without compromising the JSC compared to conventional MoO3 control devices, leading to a best power conversion efficiency of 9.2% (>40% improvement relative to relevant controls). Wider applicability of the bilayer strategy is demonstrated by a similar structure based on shallow lowest‐unoccupied‐molecular‐orbital (LUMO) levels.  相似文献   

15.
The solid‐state dye‐sensitized solar cell (DSSC) was introduced to overcome inherent manufacturing and instability issues of the electrolyte‐based DSSC and progress has been made to deliver high photovoltaic efficiencies at low cost. However, despite 15 years research and development, there still remains no clear demonstration of long‐term stability. Here, solid‐state DSSCs are subjected to the severe aging conditions of continuous illumination at an elevated temperature. A fast deterioration in performance is observed for devices encapsulated in the absence of oxygen. The photovoltaic performance recovers when re‐exposed to air. This reversible behavior is attributed to three related processes: i) the creation of light and oxygen sensitive electronic shunting paths between TiO2 and the top metal electrode, ii) increased recombination at the TiO2/organic interface, and iii) the creation of deep electron traps that reduce the photocurrent. The device deterioration is remedied by the formation of an insulating alumino‐silicate shell around the TiO2 nanocrystals, which reduces interfacial recombination, and the introduction of an insulating mesoporous SiO2 buffer layer between the top electrode and TiO2, which acts as a permanent insulating barrier between the TiO2 and the metal electrode, preventing shunting.  相似文献   

16.
An electrochemical biosensor for determination of hydrogen peroxide (H2O2) was fabricated, based on the electrostatic immobilization of horseradish peroxidase (HRP) with one-dimensional gold nanowires (Au NWs) and TiO2 nanoparticles (nano-TiO2) on a gold electrode. The nano-TiO2 can give a biocompatible microenvironment and compact film, and the Au NWs can provide fast electron transferring rate and greatly add the amount of HRP molecules immobilized on the electrode surface. Au NWs were characterized by ultraviolet–visible spectra and transmission electron microscope. The electrode modification process was probed by cyclic voltammetry and electrochemical impedance spectroscopy. Chronoamperometry was used to study the electrochemical performance of the resulting biosensor. Under optimal conditions, the linear range for the determination of H2O2 was from 2.3 × 10−6 to 2.4 × 10−3 M with a detection limit of 7.0 × 10−7 M (S/N = 3). Moreover, the proposed biosensor showed superior stability and high sensitivity.  相似文献   

17.
Lithium metal is considered to be the most promising anode for the next generation of batteries if the issues related to safety and low coulombic efficiency can be overcome. It is known that the initial morphology of the lithium metal anode has a great influence on the cycling characteristics of a lithium metal battery (LMB). Lithium‐powder‐based electrodes (Lip‐electrodes) are reported to diminish the occurrence of high surface area lithium deposits. Usually, ultra‐thin lithium foils (<50 µm) and Lip‐electrodes are prepared on a copper substrate, thus a metal–metal contact area is generated. The combination of these two metals in the presence of an electrolyte, however, can lead to galvanic corrosion. Herein, the corrosion behavior of Lip‐electrodes is studied. The porosity of such electrodes leads to a high amount of accessible Cu surface in contact with electrolyte. As a consequence, Lip‐electrodes aged for 1 week in the electrolyte show spontaneous lithium dissolution near the junction to copper and void formation on the lithium‐powder particles. This corrosion process affects the delivered capacity of Lip‐electrodes and increases the overvoltage of the lithium electrodissolution process. The occurrence of corrosion at the Cu|Lip interface raises concerns about the practicality of multi‐metallic component systems for LMBs.  相似文献   

18.
Fluorescence intensity is vital for fluorescence sensing and imaging because it determines the sensing sensitivity and imaging brightness. This study reports plasmon-enhanced fluorescence by engineering plasmonic nanostructures, that are SiO2-coated Au nanoshell dimers with a high yield exceeding 60 %. With this elaborately designed nanostructure, we show that the thin SiO2 shell can conveniently distance the fluorophore from the underneath metal, thereby effectively avoiding fluorescence quenching. Meanwhile, the inner Au nanoshell dimers create abundant hot spots at particle-particle junctions and enable near-infrared fluorescence enhancement. The largest fluorescence enhancement achieved is 69 times for the design with a 9 nm external SiO2 shell, as is also confirmed by three-dimensional finite-difference time-domain simulations. This dramatically increased fluorescence has great significance in fluorescence-based sensing and imaging.  相似文献   

19.
The present paper reports a facile and direct method to render superhydrophobicity onto substrate surfaces. SiO2 nanoparticles of various sizes are added into trimethoxyhexadecylsilane (THS) solutions to prepare superhydrophobic composite films, which are formed on test substrates. The formed composite films, with different nanoparticle concentrations and sizes, exhibit hierarchical structures in micro- and nano-scale that are positively important for superhydrophobicity. For the sake of comparison, the composite films of polydimethylsiloxane (PDMS) and SiO2 nanoparticles are also prepared and investigated. The contact angles of water droplets are measured and their change with nanoparticle concentrations and sizes are discussed. Typical structures of those formed surface are observed by using Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM). Based on the observation and measurement, we investigate how the pattern of superhydrophobicity changes with the concentration and size of nanoparticles. Crucial theories involved and related to the phenomena are also discussed.  相似文献   

20.
Earth‐abundant Cu2BaSnS4 (CBTS) thin films exhibit a wide bandgap of 2.04–2.07 eV, a high absorption coefficient > 104 cm?1, and a p‐type conductivity, suitable as a top‐cell absorber in tandem solar cell devices. In this work, sputtered oxygenated CdS (CdS:O) buffer layers are demonstrated to create a good p–n diode with CBTS and enable high open‐circuit voltages of 0.9–1.1 V by minimizing interface recombination. The best power conversion efficiency of 2.03% is reached under AM 1.5G illumination based on the configuration of fluorine‐doped SnO2 (back contact)/CBTS/CdS:O/CdS/ZnO/aluminum‐doped ZnO (front contact).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号