首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
The circumsporozoite protein (CSP) of Plasmodium spp. is a diagnostic antigen and useful biomarker for monitoring short-term/seasonal changes to malaria transmission. Using P. vivax CSP antibody ELISA, epidemiological characteristics were analyzed in the residents of Ganghwa, Cheorwon, Paju, and Goseong from 2017 to 2018. In Ganghwa and Cheorwon, 1.6% and 1.2% of residents, respectively, were PvCSP-antibody-positive in 2018, which indicates a decrease of 0.4% in the positive rate compared to 2017. The annual parasite incidence (API) in Ganghwa and Cheorwon was 24.9 and 10.5 in 2017 and 20.3 and 10.7 in 2018, respectively. Although the changes were not significant, the API in Ganghwa decreased slightly by 4.5 in 2018 compared to the previous year. In Paju and Goseong, 3.9% and 2.0% of residents were positive for the PvCSP antibody. The API in Paju was 13.1 in 2017 and 16.0 in 2018, although no malaria patients were reported for the 2 years. Therefore, the results suggest that PvCSP is a useful antigen for confirming initial malaria infection. Additionally, considering that the antibody is relatively transient, it can be employed for sero-epidemiological studies to determine the extent of malaria transmission in the current year.  相似文献   

2.
Elucidating receptor–ligand and protein–protein interactions represents an attractive alternative for designing effective Plasmodium vivax control methods. This article describes the ability of P. vivax rhoptry neck proteins 2 and 4 (RON2 and RON4) to bind to human reticulocytes. Biochemical and cellular studies have shown that two PvRON2‐ and PvRON4‐derived conserved regions specifically interact with protein receptors on reticulocytes marked by the CD71 surface transferrin receptor. Mapping each protein fragment's binding region led to defining the specific participation of two 20 amino acid‐long regions selectively competing for PvRON2 and PvRON4 binding to reticulocytes. Binary interactions between PvRON2 (ligand) and other parasite proteins, such as PvRON4, PvRON5, and apical membrane antigen 1 (AMA1), were evaluated and characterised by surface plasmon resonance. The results revealed that both PvRON2 cysteine‐rich regions strongly interact with PvAMA1 Domains II and III (equilibrium constants in the nanomolar range) and at a lower extent with the complete PvAMA1 ectodomain and Domains I and II. These results strongly support that these proteins participate in P. vivax's complex invasion process, thus providing new pertinent targets for blocking P. vivax merozoites' specific entry to their target cells.  相似文献   

3.
Changing patterns of the reemerging Plasmodium vivax malaria in the Republic of Korea (South Korea) during the period 1993 to 2005 are briefly analyzed with emphasis on the control measures used and the effects of meteorological and entomological factors. Data were obtained from the Communicable Diseases Monthly Reports published by the Korea Center for Disease Control and Prevention, and webpages of World Health Organization and United Nations. Meteorological data of Kangwon-do (Province) were obtained from local weather stations. After its first reemergence in 1993, the prevalence of malaria increased exponentially, peaking in 2000, and then decreased. In total, 21,419 cases were reported between 1993 and 2005 in South Korea. In North Korea, a total of 916,225 cases were reported between 1999 and 2004. The occurrence of malaria in high risk areas of South Korea was significantly (P > 0.05) correlated with the mosquito population but not with temperature and rainfall. Control programs, including early case detection and treatment, mass chemoprophylaxis of soldiers, and international financial aids to North Korea for malaria control have been instituted. The situation of the reemerging vivax malaria in the Republic of Korea is remarkably improving during the recent years, at least in part, due to the control activities undertaken in South and North Korea.  相似文献   

4.
Anopheles mosquitoes transmit Plasmodium parasites of mammals, including the species that cause malaria in humans. Malaria pathology is caused by rapid multiplication of parasites in asexual intraerythrocytic cycles. Sexual stage parasites are also produced during the intraerythrocytic cycle and are ingested by the mosquito, initiating gametogenesis and subsequent sporogonic stage development. Here, we present a Plasmodium protein, termed microgamete surface protein (MiGS), which has an important role in male gametocyte osmiophilic body (MOB) formation and microgamete function. MiGS is expressed exclusively in male gametocytes and microgametes, in which MiGS localises to the MOB and microgamete surface. Targeted gene disruption of MiGS in a rodent malaria parasite Plasmodium yoelii 17XNL generated knockout parasites (ΔPyMiGS) that proliferate normally in erythrocytes and form male and female gametocytes. The number of MOB in male gametocyte cytoplasm is markedly reduced and the exflagellation of microgametes is impaired in ΔPyMiGS. In addition, anti‐PyMiGS antibody severely blocked the parasite development in the Anopheles stephensi mosquito. MiGS might thus be a potential novel transmission‐blocking vaccine target candidate.  相似文献   

5.
Sexual reproduction is an obligate step in the life cycle of many parasites, including the causative agents of malaria (Plasmodium). Mixed-species infections are common in nature and consequently, interactions between heterospecific gametes occur. Given the importance of managing gene flow across parasite populations, remarkably little is understood about how reproductive isolation between species is maintained. We use the rodent malaria parasites P. berghei and P. yoelii to investigate the ecology of mixed-species mating groups, identify proteins involved in pre-zygotic barriers, and examine their evolution. Specifically, we show that (i) hybridization occurs, but at low frequency; (ii) hybridization reaches high levels when female gametes lack the surface proteins P230 or P48/45, demonstrating that these proteins are key for pre-zygotic reproductive isolation; (iii) asymmetric reproductive interference occurs, where the fertility of P. berghei gametes is reduced in the presence of P. yoelii and (iv) as expected for gamete recognition proteins, strong positive selection acts on a region of P230 and P47 (P48/45 paralogue). P230 and P48/45 are leading candidates for interventions to block malaria transmission. Our results suggest that depending on the viability of hybrids, applying such interventions to populations where mixed-species infections occur could either facilitate or hinder malaria control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号