首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The species–time relationship (STR) describes how the species richness of a community increases with the time span over which the community is observed. This pattern has numerous implications for both theory and conservation in much the same way as the species–area relationship (SAR). However, the STR has received much less attention and to date only a handful of papers have been published on the pattern. Here we gather together 984 community time-series, representing 15 study areas and nine taxonomic groups, and evaluate their STRs in order to assess the generality of the STR, its consistency across ecosystems and taxonomic groups, its functional form, and its relationship to local species richness. In general, STRs were surprisingly similar across major taxonomic groups and ecosystem types. STRs tended to be well fit by both power and logarithmic functions, and power function exponents typically ranged between 0.2 and 0.4. Communities with high richness tended to have lower STR exponents, suggesting that factors increasing richness may simultaneously decrease turnover in ecological systems. Our results suggest that the STR is as fundamental an ecological pattern as the SAR, and raise questions about the general processes underlying this pattern. They also highlight the dynamic nature of most species assemblages, and the need to incorporate time scale in both basic and applied research on species richness patterns.  相似文献   

2.
Massively parallel sequencing(MPS) technology is capable of determining the sizes of short tandem repeat(STR) alleles as well as their individual nucleotide sequences. Thus, single nucleotide polymorphisms(SNPs) within the repeat regions of STRs and variations in the pattern of repeat units in a given repeat motif can be used to differentiate alleles of the same length. In this study, MPS was used to sequence 28 forensically-relevant Y-chromosome STRs in a set of 41 DNA samples from the 3 major U.S. population groups(African Americans, Caucasians, and Hispanics).The resulting sequence data, which were analyzed with STRait Razor v2.0, revealed 37 unique allele sequence variants that have not been previously reported. Of these, 19 sequences were variations of documented sequences resulting from the presence of intra-repeat SNPs or alternative repeat unit patterns. Despite a limited sampling, two of the most frequently-observed variants were found only in African American samples. The remaining 18 variants represented allele sequences for which there were no published data with which to compare. These findings illustrate the great potential of MPS with regard to increasing the resolving power of STR typing and emphasize the need for sample population characterization of STR alleles.  相似文献   

3.
4.
Short tandem repeats (STRs) are units of 1–6 bp that repeat in a tandem fashion in DNA. Along with single nucleotide polymorphisms and large structural variations, they are among the major genomic variants underlying genetic, and likely phenotypic, divergence. STRs experience mutation rates that are orders of magnitude higher than other well-studied genotypic variants. Frequent copy number changes result in a wide range of alleles, and provide unique opportunities for modulating complex phenotypes through variation in repeat length. While classical studies have identified key roles of individual STR loci, the advent of improved sequencing technology, high-quality genome assemblies for diverse species, and bioinformatics methods for genome-wide STR analysis now enable more systematic study of STR variation across wide evolutionary ranges. In this review, we explore mutation and selection processes that affect STR copy number evolution, and how these processes give rise to varying STR patterns both within and across species. Finally, we review recent examples of functional and adaptive changes linked to STRs.  相似文献   

5.
DNA typing and genetic mapping with trimeric and tetrameric tandem repeats.   总被引:111,自引:19,他引:111       下载免费PDF全文
Tandemly reiterated sequences represent a rich source of highly polymorphic markers for genetic linkage, mapping, and personal identification. Human trimeric and tetrameric short tandem repeats (STRs) were studied for informativeness, frequency, distribution, and suitability for DNA typing and genetic mapping. The STRs were highly polymorphic and inherited stably. A STR-based multiplex PCR for personal identification is described. It features fluorescent detection of amplified products on sequencing gels, specific allele identification, simultaneous detection of independent loci, and internal size standards. Variation in allele frequencies were explored for four U.S. populations. The three STR loci (chromosomes 4, 11, and X) used in the fluorescent multiplex PCR have a combined average individualization potential of 1/500 individuals. STR loci appear common, being found every 300-500 kb on the X chromosome. The combined frequency of polymorphic trimeric and tetrameric STRs could be as high as 1 locus/20 kb. The markers should be useful for genetic mapping, as they are sequence based, and can be multiplexed with the PCR. A method enabling rapid localization of STRs and determination of their flanking DNA sequences was developed, thus simplifying the identification of polymorphic STR loci. The ease by which STRs may be identified, as well as their genetic and physical mapping utility, give them the properties of useful sequence tagged sites (STSs) for the human genome initiative.  相似文献   

6.
Short tandem repeats (STRs) are subjected to two kinds of mutational modifications: point mutations and replication slippages. The latter is found to be the more frequent cause of STR modifications, but a satisfactory quantitative measure of the ratio of the two processes has yet to be determined. The comparison of entire genome sequences of closely enough related species enables one to obtain sufficient statistics by counting the differences in the STR regions. We analyzed human–chimpanzee DNA sequence alignments to obtain the counts of point mutations and replication slippage modifications. The results were compared with the results of a computer simulation, and the parameters quantifying the replication slippage probability as well as the probabilities of point mutations within the repeats were determined. It was found that within the STRs with repeated units consisting of one, two or three nucleotides, point mutations occur approximately twice as frequently as one would expect on the basis of the 1.2% difference between the human and chimpanzee genomes. As expected, the replication slippage probability is negligible below a 10-bp threshold and grows above this level. The replication slippage events outnumber the point mutations by one or two orders of magnitude, but are still lower by one order of magnitude relative to the mutability of the markers that are used for genotyping purposes.  相似文献   

7.
A brief review of short tandem repeat mutation   总被引:1,自引:0,他引:1  
Short tandem repeats (STRs) are short tandemly repeated DNA sequences that involve a repetitive unit of 1-6 bp. Because of their polymorphisms and high mutation rates, STRs are widely used in biological research. Strand-slippage replication is the predominant mutation mechanism of STRs, and the stepwise mutation model is regarded as the main mutation model. STR mutation rates can be influenced by many factors. Moreover, some trinucleotide repeats are associated with human neurodegenerative diseases. In order to deepen our knowledge of these diseases and broaden STR application, it is essential to understand the STR mutation process in detail. In this review, we focus on the current known information about STR mutation.  相似文献   

8.
9.
STRs-PCR分型技术在法医学上的应用   总被引:5,自引:0,他引:5  
短串联重复序列 (STRs)是广泛存在于人类基因组的一类具有长度多态性的DNA序列 ,属高信息基因座。概述了STRs PCR的法医学应用特点以及它们在亲子鉴定、个体识别等领域的法医学应用及其理论基础、现状和前景。  相似文献   

10.
Survey of plant short tandem DNA repeats   总被引:46,自引:0,他引:46  
Length variations in simple sequence tandem repeats are being given increased attention in plant genetics. Some short tandem repeats (STRs) from a few plant species, mainly those at the dinucleotide level, have been demonstrated to show polymorphisms and Mendelian inheritance. In the study reported here a search for all of the possible STRs ranging from mononucleotide up to tetranucleotide repeats was carried out on EMBL and GenBank DNA sequence databases of 3026 kb nuclear DNA and 1268 kb organelle DNA in 54 and 28 plant species (plus algae), respectively. An extreme rareness of STRs (4 STRs in 1268 kb DNA) was detected in organelle compared with nuclear DNA sequences. In nuclear DNA sequences, (AT)n sequences were the most abundant followed by (A)n · (T)n, (AG)n · (CT)n, (AAT)n · (ATT)n, (AAC)n · (GTT), (AGC)n · (GCT)n, (AAG)n · (CTT)n, (AATT)n · (TTAA)n, (AAAT)n · (ATTT)n and (AC)n · (GT)n sequences. A total of 130 STRs were found, including 49 (AT)n sequences in 31 species, giving an average of 1 STR every 23.3 kb and 1 (AT)n STR every 62 kb. An abundance comparable to that for the dinucleotide repeat was observed for the tri- and tetranucleotide repeats together. On average, there was 1 STR every 64.6 kb DNA in monocotyledons versus 1 every 21.2 kb DNA in dicotyledons. The fraction of STRs that contained G-C basepairs increased as the G+C contents went up from dicotyledons, monocotyledons to algae. While STRs of mono-, di- and tetranucleotide repeats were all located in non coding regions, 57% of the trinucleotide STRs containing G-C basepairs resided in coding regions.  相似文献   

11.
Large numbers of repetitive stretches of DNA are present within the human genome that are associated with human individuality due to their polymorphic character. Approximately one-third of these repeat sequences is arranged as microsatellites or short tandem repeats (STRs) whose valuable application as state-of-the-art technique in human identity testing will be briefly summarized in this review. Prerequisties for successful DNA typing using STRs amplified by polymerase chain reaction (PCR) are outlined and particular attention is paid to the molecular structure of STRs from autosomes as well as from the Y chromosome. A comprehensive overview about current and emerging methods of STR analysis is given as well.  相似文献   

12.
STR genotyping from degraded DNA samples requires genetic profiles to be obtained from DNA fragments no bigger than 200-300 bp. It requires the use of miniSTRs, which are smaller than the STRs used in standard typing. This paper reviews recent advances in miniSTR genotyping, beginning with a brief introduction to the processes involved in DNA fragmentation and how it hinders standard STR genotyping before proceeding further to the loci included in the main DNA databases and finishing with the International Workgroups' recommended design strategies for developing miniSTR reactions. The results of the efforts of many laboratories achieving different STR multiplexes and patents are also described and compared. Finally, a consideration of the perspectives for the future in this area is presented.  相似文献   

13.
中国汉族群体5个STR分子遗传标记   总被引:1,自引:0,他引:1  
为了解中国人5个STR基因座等位片段结构特征,获得汉族群体D2S2955、D3S4014、D20S604、D22S689和GATA198B05基因座的群体遗传学数据。采取成都地区无血缘关系汉族个体血样EDTA抗凝血。Chelex法提取DNA,PCR扩增,非变性聚丙烯酰胺凝胶不连续缓冲系统水平电泳分型,自动激光荧光测序仪测定DNA序列。序列分析显示,中国人D2S2955、D3S4014、D20S604基因座具有简单重复序列,而D22S689、GATA198B05基因座具有复杂重复序列。5个STR基因座在成都汉族群体中均具有遗传多态性。揭示了我国汉族人群5个STR基因座的等位基因片段结构特征,为人类群体遗传研究提供了数据,建立的不连续缓冲系统水平电泳分型方法为检测这5个STR基因座提供了简便技术。  相似文献   

14.
Microsatellites or short tandem repeats (STRs) markers are important tools for mapping disease-causing genes by linkage, for performing investigations in forensic medicine, for population genetic studies and for studying genetic modifications in tumors. In forensic applications neoplastic tissues can be used as a source of genetic information for personal identification or paternity testing when no other specimen is available. Cancer tissues can show microsatellite instability (MSI) and loss of heterozygosity (LOH) also for the STRs used in the forensic field. In this study, we screened 56 sporadic gastrointestinal carcinomas in order to provide further data for the evaluation of the incidence of allelic alterations for 15 STR loci and the suitability of using cancerous tissues in forensic applications. Sixty-six percent of the cancerous tissues were found to possess allelic alterations of the microsatellites analyzed with a high incidence of MSI-L (microsatellite instability low) when compared to the corresponding normal tissue. The most frequently altered loci were D18S51, VWA, and FGA. From a forensic perspective, great care must be taken in evaluating the DNA typing results obtained from cancerous tissue samples.  相似文献   

15.
Simple and practical methods for grouping of adenoviruses and for identification of restriction endonuclease cleavage patterns of viral DNA were established by using infected cell DNA. DNA homology groupings of adenoviruses could be examined by spot hybridization, and restriction endonuclease cleavage patterns of viral DNAs could be obtained by Southern blot hybridization, by using infected cell DNA. The method was very sensitive and allowed the identification of the cleavage pattern of viral DNA of the inoculum by means of cell DNA extracted from infected cells with undetectable cytopathic effect (CPE). In ethidium bromide-stained gels without Southern blot hybridization, the restriction endonuclease cleavage pattern of viral DNA could be detected precisely in spite of background staining due to cellular DNA. The preparation of infected cell DNA used in these procedures was technically much easier than that of viral DNA. These methods require only a small number of infected cells and allow many isolates to be investigated with ease.  相似文献   

16.
Assurance of cell line homogeneity and capability of cell contamination detection are among the most essential steps of cell based research. Due to high discriminatory efficiency, low cost and reliability, analysis of short tandem repeats (STR) has been introduced as a method of choice for human cell line authentication. In the present study 13 Combined DNA Index System (CODIS) based STRs along with the gender determination (Amelogenin) gene were utilized to establish a reproducible approach for the authentication of 100 human cell lines deposited in the National Cell Bank of Iran (NCBI), using the polymerase chain reaction (PCR) method. PCR products were subsequently analyzed by polyacrylamide gel electrophoresis (PAGE) and visualized by silver staining followed by gel documentation and software analysis. STR profiles obtained were compared with those of the American Type Culture Collection (ATCC) and the Japanese Collection of Research Bioresource (JCRB) as STR references. We detected 18.8% cross contamination among the NCBI human cell lines. To our knowledge, this is the first report of authentication of human cell lines using the 13 CODIS core STRs combined with Amelogenin.  相似文献   

17.
DNA restriction pattern modifications were detected when Haloferax mediterranei was grown in low (10%) salt concentrations. After cells were grown again in optimal (25%) salt concentrations, the original pattern was recovered. These salt-associated DNA modifications were revealed with 5% of the 160 DNA fragments cloned and used as probes in hybridization experiments. Patterns obtained when genomic DNA was digested with different restriction enzymes showed that these modifications are related not to insertions or deletions in genome but to modifications of some specific sequences.  相似文献   

18.
The National Institute of Standards and Technology (NIST) has compiled and maintained a Short Tandem Repeat DNA Internet Database (http://www.cstl.nist.gov/biotech/++ +strbase/) since 1997 commonly referred to as STRBase. This database is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. STRBase consolidates and organizes the abundant literature on this subject to facilitate on-going efforts in DNA typing. Observed alleles and annotated sequence for each STR locus are described along with a review of STR analysis technologies. Additionally, commercially available STR multiplex kits are described, published polymerase chain reaction (PCR) primer sequences are reported, and validation studies conducted by a number of forensic laboratories are listed. To supplement the technical information, addresses for scientists and hyperlinks to organizations working in this area are available, along with the comprehensive reference list of over 1300 publications on STRs used for DNA typing purposes.  相似文献   

19.
Multiple displacement amplification (MDA) has emerged as a promising new method of whole genome amplification (WGA) with the potential to generate virtually unlimited genome-equivalent DNA from only a small amount of seed DNA. To date, genome-wide high marker density assessments of MDA–DNA have focussed mainly upon suitability for single nucleotide polymorphism (SNP) genotyping applications. Suitability for short tandem repeat (STR) genotyping has not been investigated in great detail, despite their inherent instability during DNA replication, and the obvious challenge that this presents to WGA techniques. Here, we aimed to assess the applicability of MDA in STR genotyping by conducting a genome-wide scan of 768 STR markers for MDAs of 15 high quality genomic DNAs. We found that MDA genotyping call and accuracy rates were only marginally lower than for genomic DNA. Pooling of three replicate MDAs resulted in a small increase in both call rate and genotyping accuracy. We identified 34 STRs (4.4% of total markers) of which five essentially failed with MDA samples, and 29 of which showed elevated genotyping failures/discrepancies in the MDAs. We emphasise the importance of DNA and MDA quality checks, and the use of appropriate controls to identify problematic STR markers.  相似文献   

20.
Molecular genotyping has important biomedical and forensic applications. However, limiting amounts of human biological material often yield genomic DNA (gDNA) in insufficient quantity and of poor quality for a reliable analysis. This motivated the development of an efficient whole genome amplification method with quantitatively unbiased representation usable on fresh and degraded gDNA. Amplification of fresh frozen, formalin-fixed paraffin-embedded (FFPE) and DNase-degraded DNA using degenerate oligonucleotide-primed PCR or primer extension amplification using a short primer sequence bioinformatically optimized for coverage of the human genome was compared with amplification using current primers by chromosome-based and BAC-array comparative genomic hybridization (CGH), genotyping at short tandem repeats (STRs) and single base mutation detection. Compared with current primers, genome amplification using the bioinformatically optimized primer was significantly less biased on CGH in self-self hybridizations, and replicated tumour genome copy number aberrations, even from FFPE tissue. STR genotyping could be performed on degraded gDNA amplified using our technique but failed with multiple displacement amplification. Of the 18 different single base mutations 16 (89.5%) were correctly identified by sequencing gDNA amplified from clinical samples using our technique. This simple and efficient isothermal method should be helpful for genetic research and clinical and forensic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号